-
P.H. van der Kamp and Jan A. Sanders, On Testing Integrability, J Nonlinear Math. Phys. 8 (2001) 561-574.
- P.H. van der Kamp and Jan A. Sanders, Almost Integrable Evolution Equations, Selecta Math. (N.S.) 8 (2002) 705-719.
- P.H. van der Kamp, On proving integrability, Inverse Probl. 18 (2002) 405-414.
- P.H. van der Kamp, Classification of Integrable B-equations, J. Differ. Equations 202 (2004) 256-283.
- E.L. Mansfield and P.H. van der Kamp, Evolution of curvature invariants and lifting integrability, J. Geom. Phys. 56 (2006) 1294-1325.
- P.H. van der Kamp, O. Rojas and G.R.W. Quispel, Closed-form expressions for integrals of mKdV and sine-Gordon maps, J. Phys A: Math Gen. 40 (2007) 12789-12798.
- D.T. Tran, P.H. van der Kamp and G.R.W. Quispel, Closed-form expressions for integrals of traveling wave reductions of integrable lattice equations, J. Phys. A: Math. Theor. 42 (2009) 225201.
- P.H. van der Kamp, Initial value problems for lattice equations, J. Phys. A: Math. Theor. 42 (2009) 404019.
- P.H. van der Kamp, Global classification of 2-component approximately integrable evolution equations, Found. Comput. Math. 9 (2009) 559-597.
- D.T. Tran, P.H. van der Kamp and G.R.W. Quispel, Sufficient number of integrals for the pth order Lyness equation, J. Phys. A: Math. Theor. 43 (2010) 302001.
- P.H. van der Kamp and G.R.W. Quispel, The staircase method: integrals for periodic reductions of integrable lattice equations, J. Phys. A: Math. Theor. 43 (2010) 465207.
- P.E. Spicer, F.W. Nijhoff and P.H. van der Kamp, Higher analogues of the discrete-time Toda equation and the quotient-difference algorithm, Nonlinearity 24 (2011) 2229-2263.
- D. Tran, P.H. van der Kamp and G.R.W. Quispel, Involutivity of integrals for sine-Gordon, modified KdV and potential KdV maps, J. Phys. A 44 (2011) 295206.
- P.H. van der Kamp, Growth of degrees of integrable mappings, J. Differ. Equ. Appl. 18 (2012) 447-460.
- D.K. Demskoi, D.T. Tran, P.H. van der Kamp and G.R.W Quispel, A novel nth order difference equation that may be integrable, J. Phys. A: Math. Theor. 45 (2012) 135202.
- T. Bridgman, W. Hereman, G.R.W. Quispel and P.H. van der Kamp, Symbolic computation of Lax pairs of partial difference equations using consistency around the cube, Found. Comput. Math. 13 (2013) 517-544.
- A.N.W. Hone, P.H. van der Kamp, G.R.W. Quispel and D.T. Tran, Integrability of reductions of the discrete Korteweg-De Vries and potential Korteweg-De Vries equations, Proc R Soc A 469 (2013) 20120747.
- C.M. Ormerod, P.H. van der Kamp and G.R.W. Quispel, Discrete Painleve equations and their Lax pairs as reductions of integrable lattice equations, J. Phys. A: Math. Theor. 46 (2013) 095204 (22pp).
- P.H. van der Kamp, On the Fourier transform of the greatest common divisor, INTEGERS 13 (2013) A24 (16pp).
- C.M. Ormerod, P.H. van der Kamp, J. Hietarinta and G.R.W. Quispel, Twisted reductions of integrable lattice equations, and their Lax representations, Nonlinearity 27 (2014) 1367-1390.
- P.H. van der Kamp, T.E. Kouloukas, G.R.W. Quispel, D.T. Tran and P. Vanhaecke, Integrable and superintegrable systems associated with multi-sums of products, Proc. R. Soc. A 470 (2014) 20140481.
- P.H. van der Kamp, Initial value problems for quad equations, J. Phys. A: Math. Theor. 48 (2015) 065204.
- P.H. van der Kamp, Somos-4 and Somos-5 are arithmetic divisibility sequences, J. Difference Equ. Appl. 22 (2016) 570-580.
- Dinh T. Tran, Peter H. van der Kamp, and G.R.W. Quispel, Poisson brackets of mappings obtained as (q,−p) reductions of lattice equations, Regular and Chaotic Dynamics 21 (2016) 682-696.
- K. Hamad and P.H. van der Kamp, From discrete integrable equations to Laurent recurrences, J. Difference Equ. Appl. 22 (2016) 789-816.
- K. Hamad, A.N.W. Hone, P.H. van der Kamp and G.R.W. Quispel, QRT maps and related Laurent systems, Adv. Appl. Math. 96 (2018) 216-248.
- C.A. Evripidou, P.H. van der Kamp and C. Zhang, Dressing the Dressing Chain, SIGMA 14 (2018) 059, 14 pp.
- P.H. van der Kamp, G.R.W Quispel and D.-J. Zhang, Duality for discrete integrable systems II, J. Phys. A: Math. Theor. 51 (2018) 365202.
- E. Celledoni, C. Evripidou, D.I. McLaren, B. Owren, G.R.W. Quispel, B.K. Tapley and P.H. van der Kamp, Using discrete Darboux polynomials to detect and determine preserved measures and integrals of rational maps, J. Phys. A: Math. Theor. 52 (2019) 31LT01 (11pp).
- P.H. van der Kamp, E. Celledoni, R.I. McLachlan, D.I. McLaren, B. Owren, G.R.W. Quispel, Three classes of quadratic vector fields for which the Kahan discretization is the root of a generalised Manin transformation, J. Phys. A: Math. Theor. 52 (2019) 045204 (10pp).
- J.M. Tuwankotta, P.H. van der Kamp, G.R.W. Quispel and K.V.I. Saputra, Generating a chain of maps which preserve the same integral as a given map, Phys. Scr. 94 (2019) 125207 (11pp).
- J. Moorfield, S. Wang, W. Yang, A. Bedari, P.H. van der Kamp, A Möbius transformation based model for fingerprint minutiae variations, Pattern Recognition 98 (2020) 107054.
- D.D. Zhang, P.H. van der Kamp, D.-J. Zhang, Multi-component extension of CAC systems, SIGMA 16 (2020), 060, 30 pages.
- G.R.W. Quispel, D.I. McLaren, P.H. van der Kamp, A novel 8-parameter integrable map in R4, J. Phys. A: Math. Theor. 53 (2020) 40LT01 (6pp).
- P.H. van der Kamp, D.I. McLaren, G.R.W. Quispel, Homogeneous Darboux polynomials and generalising integrable ODE systems, J. Comput. Dyn. 8(1) (2021) 1-8.
- P.H. van der Kamp, D.I. McLaren and G.R.W. Quispel, Generalised Manin transformations and QRT maps, J. Comput. Dyn. 8(2) (2021) 183-211.
- X. Wei, P.H. van der Kamp, D.J. Zhang, Integrability of auto-Bäcklund transformations and solutions of a torqued ABS equation, Comm. Theor. Phys. 73 (2021) 075005 (5pp).
- P.H. van der Kamp, A new class of integrable maps of the plane: Manin transformations with involution curves, SIGMA 17 (2021), 067, 14 pages.
- D.D Zhang, D.J. Zhang, P.H. van der Kamp, From auto-Bäcklund transformations to auto-Bäcklund transformations, and torqued ABS equations, Math Phys Anal Geom (2021) 24:33.
- V. Caudrelier, P.H. van der Kamp, C. Zhang, Integrable boundary conditions for quad equations, open boundary reductions and integrable mappings, Int. Math. Res. Not. 2022(22) (2022) 18110-18153.
-
G.R.W. Quispel, B. Tapley, D.I. McLaren, P.H. van der Kamp, Linear Darboux polynomials for Lotka-Volterra systems, trees and superintegrable families, J. Phys. A: Math. Theor. 56 (2023) 315201.
-
P.H. van der Kamp, R.I. McLachlan, D.I. McLaren, G.R.W. Quispel. Measure preservation and integrals for Lotka–Volterra tree-systems and their Kahan discretisation, J. Comp. Dyn. 11(4) (2024) 468-484.
-
P.H. van der Kamp, F.W. Nijhoff, D.I. McLaren, G.R.W. Quispel, On trilinear and quadrilinear equations associated with the lattice Gel’fand–Dikii hierarchy, Partial Differential Equations in Applied Mathematics 12 (2024) 100913.
- P.H. van der Kamp, G.R.W. Quispel and D.I. McLaren, Trees and superintegrable Lotka-Volterra families, Mathematical Physics, Analysis and Geometry 27:25 (2024) https://doi.org/10.1007/s11040-024-09496-7.
- P.H. van der Kamp, D.I. McLaren and G.R.W. Quispel, On a quadratic Poisson algebra and integrable Lotka-Volterra systems with solutions in terms of Lambert's W function, Regul. Chaotic Dyn. (2024) doi: 10.1134/S1560354724580032.
.