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Abstract
We present a method to construct superintegrable n-component Lotka–Volterra
(LV) systems with 3n− 2 parameters. We apply the method to LV systems
with n components for 1< n< 6, and present several n-dimensional superin-
tegrable families. The LV systems are in one-to-one correspondence with trees
on n vertices.

Keywords: Darboux polynomials, Lotka–Volterra systems, superintegrability,
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1. Introduction

The original 2-dimensional Lotka–Volterra (LV) system,

ẋ= x(a− by), ẏ= y(−c+ dx), (1)

where ẋ denotes the derivative with respect to time, was derived as a model to describe the
interaction between predator and prey fish [10, 18, 25]. Sternberg [22, chapter 11] gives a
dynamical systems perspective and an explanation why fishing decreases the number of pred-
ators. The 2-dimensional system (1) has been generalised to n-dimensional systems of the form
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ẋi = xi

(
bi +

∑
i

Ai,jxj

)
, (2)

where b is a real vector, and A is a real matrix, and these have been studied extensively. For
references on various aspects of LV systems, including integrability as well as their history, see
[1–4, 6–8, 10, 12, 14, 16, 17, 19]. Prelle and Singer wrote a very influential paper [20] proving
that if a polynomial ODE has an elementary integral, then it has a logarithmic integral. Note
that in the mathematical physics literature the matrixA is often assumed to be skew symmetric.
This is not assumed here.

A vector field on an n-dimensional manifold is called superintegrable if it admits n− 1
functionally independent constants of motion (i.e. first integrals), see [24]. In this paper we
construct superintegrable n-component LV systems with 3n− 2 parameters.

Darboux polynomials (DPs) are building blocks of rational integrals and their
generalisations [11, 13]. Given an ordinary differential equation (ODE)

dx
dt

= f(x),

where x(t) and f are n-dimensional vectors, a DP P(x) is defined by the existence of a poly-
nomial C(x) s.t.

dP(x)
dt

= C(x)P(x). (3)

Note that (3) implies that if P(x(0)) = 0, then P(x(t)) = 0,∀t. For this reason DPs are also
called second integrals.

In section 2, we provide a method to obtain m integrals for an n-dimensional homogen-
eous quadratic ODE, from m+ n DPs. In section 3, we give conditions on b and A which are
equivalent to

Pi,k = αxi +βxk

being a DP for (2). In section 4, we look at the intersection of the above two classes, i.e. at
homogeneous LV systems, and use the described method and mentioned DPs to construct
some superintegrable systems in dimensions 2, 3, and 4. In section 5, we explain how these
superintegrable n-dimensional LV systems are in one-to-one correspondence with trees on n
vertices. Such a tree has n− 1 edges, and each of these edges corresponds to an integral. If an
edge exists between vertices i and k, the corresponding integral can be written as a product of
Pi,k and powers of the variables xj, j = 1 . . .n. In section 6, we cover the superintegrable LV-
systems which relate to the three non-isomorphic trees on five vertices. We also describe the
factorisation of the exponents of the variables in terms of minors of the matrix A. In our final
section we give some details for the superintegrable n-dimensional LV systems that relate
to tall trees. In the appendix we explain how the Euler top relates to a special case of our
superintegrable 3-dimensional LV system.

2. A rather general method

Let

dP1

dt
= C1P1,

dP2

dt
= C2P2
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then

d
dt

(Pα1
1 Pα2

2 ) = (α1C1 +α2C2)P
α1
1 Pα2

2 .

Hence cofactors Ci form a linear space. Note that C1 = C2 if and only if P1
P2

is an integral. We
also have

Pα1
1 Pα2

2 is a first integral ⇔ α1C1 +α2C2 = 0, (4)

and more generally∏
i

Pαi
i is a first integral ⇔

∑
i

αiCi = 0. (5)

It follows that integrals that arise in this way are factorisable.
If there are more functionally independent DPs than the dimension of this linear space, then

there must be one or more integrals. The method we introduce here, produces m integrals for
an n-dimensional homogeneous quadratic ODE, from n+m DPs.

• Find n independent DPs for the ODE:

Ṗi(x) = Pi(x)Ci(x). (6)

The Ci will be linear. Defining v to be the vector with components vi := ln(Pi), i = 1, . . . ,n,
the equation (6) can be written as

v̇= Ax (7)

where A is some constant invertible matrix.
• Find m additional DPs for the ODE (m⩽ n− 1 is a necessary condition for the integ-
rals to be independent). Defining w to be the vector with components wi := ln(Pi),
i = n+ 1, . . . ,n+m, we get

ẇ= Bx. (8)

Eliminating x, we again get

ẇ−BA−1v̇= 0→ w−BA−1v= I. (9)

For n-component LV systems, n DPs are given by the components of the vector x, and we
set v= x. From (9), by exponentiation of the logarithmic integrals I, we obtain m integrals of
the form

P|A|
n+i

n∏
j=1

xZi,jj , i = 1, . . . ,m,

where

Z :=−BA−1|A| (10)

and |A| is the determinant of A.
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3. Additional DPs for LV systems

The complement of {i,k} is denoted {i,k}c := {1,2, . . . ,n} \ {i,k}.

Lemma 1. Consider a system with

ẋi = xi

bi + n∑
j=1

Ai,jxj

 , ẋk = xk

bk+ n∑
j=1

Ak,jxj

 . (11)

The expression, with αβ ̸= 0,

Pi,k = αxi +βxk, (12)

is a DP if and only if, for some constant b and all j ∈ {i,k}c,

Ai,j = Ak,j (13)

bi = bk = b (14)

α(Ak,k−Ai,k) = β(Ak,i−Ai,i) (15)

and (Ak,k−Ai,k)(Ak,i−Ai,i) ̸= 0.

Proof. We first show that the conditions (13)–(15) are sufficient, i.e. if they are satisfied, then
Pi,k defined by (12) is a DP for the ODE defined by (11). Equation (12) implies with (11) that

αẋi +βẋk = αxi

bi + n∑
j=1

Ai,jxj

+βxk

bk+ n∑
j=1

Ak,jxj


= αxi (bi +Ai,ixi +Ai,kxk+Σ′)+βxk (bk+Ak,ixi +Ak,kxk+Σ′)

= (αxi +βxk)b+αAi,ix
2
i +(αAi,k+βAk,i)xixk+βAk,kx

2
k +(αxi +βxk)Σ

′

using (14)

= (αxi +βxk)(b+Ai,ixi +Ak,kxk+Σ′) using (15),

and where (using (13))

Σ ′ :=
∑

j∈{i,k}c
Ai,jxj =

∑
j∈{i,k}c

Ak,jxj. (16)

Next we show the conditions are necessary, i.e. if Pi,k defined by (12) is a DP for the ODE
defined by (11) then (13)–(15) hold. Equation (12) implies with (11) that

αẋi +βẋk = αxi

bi + n∑
j=1

Ai,jxj

+βxk

bk+ n∑
j=1

Ak,jxj

 . (17)

First consider all terms that contain xj on the r.h.s., where j ∈ {i,k}c:

αxiAi,jxj+βxkAk,jxj. (18)

This must vanish if we substitute

xk =−α

β
xi. (19)
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We find α(Ai,j−Ak,j)xi xj = 0 and hence

Ai,j = Ak,j (20)

for all j ∈ {i,k}c.
Now consider all remaining terms that do not contain any xj, with j ∈ {i,k}c, i.e.

αxi (bi +Ai,ixi +Ai,kxk)+βxk(bk+Ak,ixi +Ak,kxk). (21)

Once again (21) must vanish if we substitute (19). Hence

xi(bi− bk)+ x2i

[
Ai,i−

(
α

β
Ai,k+Ak,i

)
+

α

β
Ak,k

]
= 0,

which implies that

bi = bk = b, say,

and

α

β
=

Ai,i−Ak,i
Ai,k−Ak,k

.

Of course several low-dimensional instances of lemma 1 have appeared in papers by vari-
ous authors over the years, cf e.g. a 2D instance in equation (3.2) of [15], a 3D instance in
proposition 1#(3) of [5], and a 4D instance in equation (12) of [10].

4. Superintegrable n-component LV systems, n= 2,3,4

4.1. n=2

The system {
ẋ1 = x1 (a1x1 + b1x2)
ẋ2 = x2 (c1x1 + a2x2)

(22)

admits the DPs x1,x2, with cofactors a1x1 + b1x2,a2x2 + c1x1, and the DP (c1 − a1)x1 +
(a2 − b1)x2, with cofactor a1x1 + a2x2. They give rise to matrices

A=

(
a1 b1
c1 a2

)
and B=

(
a1 a2

)
, (23)

and hence to the integral

I= ((c1 − a1)x1 +(a2 − b1)x2)
a1a2−b1c1 x1

−a2(a1−c1)x2
−a1(a2−b1).

4.2. n=3

The system  ẋ1 = x1 (a1x1 + b1x2 + b2x3)
ẋ2 = x2 (a2x2 + b2x3 + c1x1)
ẋ3 = x3 (a3x3 + c1x1 + c2x2)

(24)
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relates to matrix

A=

a1 b1 b2
c1 a2 b2
c1 c2 a3

 . (25)

The following are two additional DPs:

P1,2 = (c1 − a1)x1 +(a2 − b1)x2, P2,3 = (c2 − a2)x2 +(a3 − b2)x3,

with cofactors

C1,2 = a1x1 + a2x2 + b2x3, C2,3 = c1x1 + a2x2 + a3x3.

Thus we have

B=

(
a1 a2 b2
c1 a2 a3,

)
and we find 2= n− 1 integrals

I1 = ((c1 − a1)x1 +(a2 − b1)x2)
|A| x1

−(a2a3−b2c2)(a1−c1)x2
−(a2−b1)(a1a3−b2c1)x3

b2(a2−b1)(a1−c1),

I2 = ((c2 − a2)x2 +(a3 − b2)x3)
|A| x1

c1(a3−b2)(a2−c2)x2
−(a2−c2)(a1a3−b2c1)x3

−(a3−b2)(a1a2−b1c1).

A special case of (24), where a1 =−c1, c2 =−a2 = b1 and a3 =−b2, is linearly equivalent
to the Euler top, which has an extra integral, cf appendix.

4.3. n=4

4.3.1.
The matrix

A=


a1 b1 b2 b3
c1 a2 b2 b3
c1 c2 a3 b3
c1 c2 c3 a4

 (26)

has the property that Ai,j = Ai+1,j for all i ∈ {1,2,3} and j ∈ {i, i+ 1}c. The associated LV
system is 

ẋ1 = x1(a1x1 + b1x2 + b2x3 + b3x4)
ẋ2 = x2(c1x1 + a2x2 + b2x3 + b3x4)
ẋ3 = x3(c1x1 + c2x2 + a3x3 + b3x4)
ẋ4 = x4(c1x1 + c2x2 + c3x3 + a4x4)

. (27)

The system (27) has seven DPs. The obvious ones are Pi = xi, i = 1,2,3,4, with cofactors
Ci =

∑n
j=1Ai,jxj. The other three, obtained from lemma 1, are:

P1,2 = (c1 − a1)x1 +(a2 − b1)x2,

P2,3 = (c2 − a2)x2 +(a3 − b2)x3,

P3,4 = (c3 − a3)x3 +(a4 − b3)x4,

with cofactors

C1,2 = a1x1 + a2x2 + b2x3 + b3x4,

C2,3 = c1x1 + a2x2 + a3x3 + b3x4,

C3,4 = c1x1 + c2x2 + a3x3 + a4x4.

6
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The coefficient matrix from these cofactors is

B=

a1 a2 b2 b3
c1 a2 a3 b3
c1 c2 a3 a4

 .

The rather general method, introduced in section 2, gives rise to the following 3= n− 1 func-
tionally independent integrals:

Ii = P|A|
i,i+1x1

Zi,1x2
Zi,2x3

Zi,3x4
Zi,4 , i = 1,2,3,

where I1 is determined by

Z1,1 =−(a2a3a4 − a2b3c3 − a3b3c2 − a4b2c2 + b2b3c2 + b3c2c3)(a1 − c1) ,

Z1,2 =−(a2 − b1)(a1a3a4 − a1b3c3 − a3b3c1 − a4b2c1 + b2b3c1 + b3c1c3) ,

Z1,3 = (a4b2 − b3c3)(a2 − b1)(a1 − c1) ,

Z1,4 = b3 (a3 − b2)(a2 − b1)(a1 − c1) ,

I2 is determined by

Z2,1 = c1 (a4 − b3)(a3 − b2)(a2 − c2) ,

Z2,2 =−(a2 − c2)(a1a3a4 − a1b3c3 − a3b3c1 − a4b2c1 + b2b3c1 + b3c1c3) ,

Z2,3 =−(a3 − b2)(a1a2a4 − a1b3c2 − a2b3c1 − a4b1c1 + b1b3c1 + b3c1c2) ,

Z2,4 = b3 (a3 − b2)(a2 − c2)(a1 − c1) ,

and I3 is determined by

Z3,1 = c1 (a4 − b3)(a3 − c3)(a2 − c2) ,

Z3,2 = (a4 − b3)(a3 − c3)(c2a1 − c1b1) ,

Z3,3 =−(a3 − c3)(a1a2a4 − a1b3c2 − a2b3c1 − a4b1c1 + b1b3c1 + b3c1c2) ,

Z3,4 =−(a4 − b3)(a1a2a3 − a1b2c2 − a2b2c1 − a3b1c1 + b1b2c1 + b2c1c2) .

4.3.2.
Next we consider the matrix

A=


a1 b1 b2 b3
c1 a2 b2 b3
c1 c2 a3 b3
c1 c3 b2 a4

 .

It has the property that Ai,j = Ak,j for all (i,k) ∈ {(1,2),(2,3),(2,4)} and j ∈ {i,k}c. The cor-
responding LV system reads

ẋ1 = x1(a1x1 + b1x2 + b2x3 + b3x4)
ẋ2 = x2(c1x1 + a2x2 + b2x3 + b3x4)
ẋ3 = x3(c1x1 + c2x2 + a3x3 + b3x4)
ẋ4 = x4(c1x1 + c3x2 + b2x3 + a4x4)

. (28)

The additional DPs are

P1,2 = (c1 − a1)x1 +(a2 − b1)x2,

P2,3 = (c2 − a2)x2 +(a3 − b2)x3,

P2,4 = (c3 − a2)x2 +(a4 − b3)x4,

7
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with cofactors

C1,2 = a1x1 + a2x2 + b2x3 + b3x4,

C2,3 = c1x1 + a2x2 + a3x3 + b3x4,

C3,4 = c1x1 + a2x2 + b2x3 + a4x4.

The coefficient matrix from these cofactors is

B=

a1 a2 b2 b3
c1 a2 a3 b3
c1 a2 b2 a4

 .

We label the special pairs of indices of rows of A as follows,

e1 = (1,2), e2 = (2,3), e3 = (2,4). (29)

The same label can be used to enumerate the functionally independent integrals,

Ii = P|A|
ei x1

Zi,1x2
Zi,2x3

Zi,3x4
Zi,4 , i = 1,2,3,

where

Z1,1 =−(a2a3a4 − a2b2b3 − a3b3c3 − a4b2c2 + b2b3c2 + b2b3c3)(a1 − c1)

Z1,2 =−(a2 − b1)(a1a3a4 − a1b2b3 − a3b3c1 − a4b2c1 + 2b2b3c1)

Z1,3 = b2 (a4 − b3)(a2 − b1)(a1 − c1)

Z1,4 = b3 (a3 − b2)(a2 − b1)(a1 − c1) ,

Z2,1 = c1 (a4 − b3)(a3 − b2)(a2 − c2)

Z2,2 =−(a2 − c2)(a1a3a4 − a1b2b3 − a3b3c1 − a4b2c1 + 2b2b3c1)

Z2,3 =−(a3 − b2)(a1a2a4 − a1b3c3 − a2b3c1 − a4b1c1 + b1b3c1 + b3c1c3)

Z2,4 = b3 (a3 − b2)(a2 − c2)(a1 − c1) ,

and

Z3,1 = c1 (a4 − b3)(a3 − b2)(a2 − c3)

Z3,2 =−(a2 − c3)(a1a3a4 − a1b2b3 − a3b3c1 − a4b2c1 + 2b2b3c1)

Z3,3 = b2 (a4 − b3)(a2 − c3)(a1 − c1)

Z3,4 =−(a4 − b3)(a1a2a3 − a1b2c2 − a2b2c1 − a3b1c1 + b1b2c1 + b2c1c2) .

The special pairs of indices of rows of A can be interpreted as edges of a tree, which we will
do in the next section.

5. Connection to trees

To each of the above n-component LV systems we associate a free (unrooted) tree T on n
vertices as follows. The tree has an edge between vertex i and vertex k if the condition that
Ai,j = Ak,j for all j ∈ {i,k}c is satisfied. Thus, the systems (23), (25), (26) and (28) relate to the
trees depicted in figure 1.

Vice versa, a tree T on n (ordered) vertices has n− 1 (ordered) edges. We associated to
T a matrix A as follows. We start with an n× n diagonal matrix A, with Ai,i = ai. Then for
each edge of T we fix two off-diagonal entries of A as follows. For the mth edge of the graph
T, em = (i,k) with i< k, we set Ai,k = bm and Ak,i = cm. In [23] we show that the remaining

8
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Figure 1. The trees connected to the LV systems (23), (25), (26) and (28) (from left to
right).

entries of the matrix A are uniquely determined by the condition that Ai,j = Ak,j when (i, k) is
an edge of T and j ∈ {i,k}c. The matrix A has 3n− 2 free parameters and defines a LV system

ẋi = xi

n∑
j=1

Ai,jxj, i = 1,2, . . . ,n, (30)

with n− 1 integrals. In [23], we prove their functional independence, theorem 2.

Theorem 2. Each tree on n vertices gives rise to a LV system with 3n− 2 parameters, which
admits n− 1 functionally independent integrals.

One can think of the parameters ai, bj, ck as weights in a complete digraph D (allowing
both loops and multiple edges) which is associated to T. The matrix A is then nothing but the
adjacency matrix of D. The connection between LV systems and graphs, via the adjacency
matrix of the graph, has been made before [2, 7, 9, 12], but in the context of undirected or dir-
ected graphs, and (mainly) anti-symmetric (and hence Hamiltonian) LV systems. The general
setting of complete digraphs seems to be new. Note that the number of trees is given by the
sequence [21, A000055].

6. Superintegrable five-component LV systems

There are three non-isomorphic trees on five vertices, see figure 2. Following the procedure in
the previous subsection, the trees in figure 2 give rise to matrices (A)

a1 b1 b2 b3 b4
c1 a2 b2 b3 b4
c1 c2 a3 b3 b4
c1 c2 c3 a4 b4
c1 c2 c3 c4 a5

 ,


a1 b1 b2 b3 b4
c1 a2 b2 b3 b4
c1 c2 a3 b3 b4
c1 c2 c3 a4 b4
c1 c2 c4 b3 a5

 ,


a1 b1 b2 b3 b4
c1 a2 b2 b3 b4
c1 c2 a3 b3 b4
c1 c3 b2 a4 b4
c1 c4 b2 b3 a5

 , (31)

9



J. Phys. A: Math. Theor. 56 (2023) 315201 G R W Quispel et al

Figure 2. These are the three non-isomorphic trees on five vertices.

and hence to LV systems, each with 13 free parameters,
ẋ1 = x1 (a1x1 + b1x2 + b2x3 + b3x4 + b4x5)
ẋ2 = x2 (a2x2 + b2x3 + b3x4 + b4x5 + c1x1)
ẋ3 = x3 (a3x3 + b3x4 + b4x5 + c1x1 + c2x2)
ẋ4 = x4 (a4x4 + b4x5 + c1x1 + c2x2 + c3x3)
ẋ5 = x5 (a5x5 + c1x1 + c2x2 + c3x3 + c4x4) ,

(32)


ẋ1 = x1 (a1x1 + b1x2 + b2x3 + b3x4 + b4x5)
ẋ2 = x2 (a2x2 + b2x3 + b3x4 + b4x5 + c1x1)
ẋ3 = x3 (a3x3 + b3x4 + b4x5 + c1x1 + c2x2)
ẋ4 = x4 (a4x4 + b4x5 + c1x1 + c2x2 + c3x3)
ẋ5 = x5 (a5x5 + b3x4 + c1x1 + c2x2 + c4x3)

(33)

and 
ẋ1 = x1 (a1x1 + b1x2 + b2x3 + b3x4 + b4x5)
ẋ2 = x2 (a2x2 + b2x3 + b3x4 + b4x5 + c1x1)
ẋ3 = x3 (a3x3 + b3x4 + b4x5 + c1x1 + c2x2)
ẋ4 = x4 (a4x4 + b2x3 + b4x5 + c1x1 + c3x2)
ẋ5 = x5 (a5x5 + b2x3 + b3x4 + c1x1 + c4x2) .

(34)

Using the methods explained in sections 2 and 3, we can construct four functionally inde-
pendent integrals for each of these systems. As in section 4, the exponents in the integrals
exhibit interesting factorisation properties. Below we provide the integrals for systems (32),
(33) and (34), expressing each exponent as a product of differences of parameters and a minor
of A. We letAI;J denote the matrixAwith rows i ∈ I and columns j ∈ J deleted. Its determinant
|AI;J| is called a minor of A.

10
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The LV system (32) admits the four functionally independent integrals

I1 = ((c1 − a1)x1 +(a2 − b1)x2)
|A| x(c1−a1)|A1;1|

1 x(b1−a2)|A2;2|
2 x(a2−b1)(a1−c1)|A2,3;1,2|

3

× x(a3−b2)(a2−b1)(a1−c1)|A2,3,4;1,2,3|
4 x(a4−b3)(a3−b2)(a2−b1)(a1−c1)b4

5

I2 = ((c2 − a2)x2 +(a3 − b2)x3)
|A| x(a5−b4)(a4−b3)(a3−b2)(a2−c2)c1

1 x(c2−a2)|A2;2|
2 x(b2−a3)|A3;3|

3

× x(a3−b2)(a2−c2)(a1−c1)|A1,3,4;1,2,3|
4 x(a4−b3)(a3−b2)(a2−c2)(a1−c1)b4

5

I3 = ((c3 − a3)x3 +(a4 − b3)x4)
|A| x(a5−b4)(a4−b3)(a3−c3)(a2−c2)c1

1

× x(a5−b4)(a4−b3)(a3−c3)|A2,4,5;3,4,5|
2 x(c3−a3)|A3;3|

3 x(b3−a4)|A4;4|
4 x(a4−b3)(a3−c3)(a2−c2)(a1−c1)b4

5

I4 = ((c4 − a4)x4 +(a5 − b4)x5)
|A| x(a5−b4)(a4−c4)(a3−c3)(a2−c2)c1

1

× x(a5−b4)(a4−c4)(a3−c3)|A2,3,5;3,4,5|
2 x(a5−b4)(a4−c4)|A3,5;4,5|

3 x(c4−a4)|A4;4|
4 x(b4−a5)|A5;5|

5 .

The LV system (33) admits the four functionally independent integrals

I1 = ((c1 − a1)x1 +(a2 − b1)x2)
|A| x(c1−a1)|A1;1|

1 x(b1−a2)|A2;2|
2 x(a1−c1)(a2−b1)|A2,3;1,2|

3

× x(a1−c1)(a2−b1)(a3−b2)(a5−b4)b3
4 x(a1−c1)(a2−b1)(a3−b2)(a4−b3)b4

5

I2 = ((c2 − a2)x2 +(a3 − b2)x3)
|A| x(a2−c2)(a3−b2)(a4−b3)(a5−b4)c1

1 x(c2−a2)|A2;2|
2 x(b2−a3)|A3,3|

3

× x(a1−c1)(a2−c2)(a3−b2)(a5−b4)b3
4 x(a1−c1)(a2−c2)(a3−b2)(a4−b3)b4

5 ,

I3 = ((c3 − a3)x3 +(a4 − b3)x4)
|A| x(a2−c2)(a3−c3)(a4−b3)(a5−b4)c1

1

× x(a3−c3)(a4−b3)(a5−b4)|A2,4,5;3,4,5|
2 x(c3−a3)|A3;3|

3 x(b3−a4)|A4;4|
4 x(a1−c1)(a2−c2)(a3−c3)(a4−b3)b4

5 ,

I4 = ((c4 − a3)x3 +(a5 − b4)x5)
|A| x(a2−c2)(a3−c4)(a4−b3)(a5−b4)c1

1

× x(a3−c4)(a4−b3)(a5−b4)|A2,4,5;3,4,5|
2 x(c4−a3)|A3;3|

3 x(a1−c1)(a2−c2)(a3−c4)(a5−b4)b3
4 x(b4−a5)|A5;5|

5 .

The LV system (34) admits the four functionally independent integrals

I1 = ((c1 − a1)x1 +(a2 − b1)x2)
|A| x(c1−a1)|A1;1|

1 x(b1−a2)|A2;2|
2 x(a1−c1)(a2−b1)(a4−b3)(a5−b4)b2

3

× x(a1−c1)(a2−b1)(a3−b2)(a5−b4)b3
4 x(a1−c1)(a2−b1)(a3−b2)(a4−b3)b4

5 ,

I2 = ((c2 − a2)x2 +(a3 − b2)x3)
|A| x(a2−c2)(a3−b2)(a4−b3)(a5−b4)c1

1 x(c2−a2)|A2;2|
2 x(b2−a3)|A3;3|

3

× x(a1−c1)(a2−c2)(a3−b2)(a5−b4)b3
4 x(a1−c1)(a2−c2)(a3−b2)(a4−b3)b4

5 ,

I3 = ((c3 − a2)x2 +(a4 − b3)x4)
|A| x(a2−c3)(a3−b2)(a4−b3)(a5−b4)c1

1 x(c3−a2)|A2;2|
2

× x(a1−c1)(a2−c3)(a4−b3)(a5−b4)b2
3 x(b3−a4)|A4;4|

4 x(a1−c1)(a2−c3)(a3−b2)(a4−b3)b4
5 ,

I4 = ((c4 − a2)x2 +(a5 − b4)x5)
|A| x(a2−c4)(a3−b2)(a4−b3)(a5−b4)c1

1 x(c4−a2)|A2;2|
2

× x(a1−c1)(a2−c4)(a4−b3)(a5−b4)b2
3 x(a1−c1)(a2−c4)(a3−b2)(a5−b4)b3

4 x(b4−a5)|A5;5|
5 .

The factorisation for the general case will be described in more detail in [23].
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Figure 3. Tall tree on n vertices.

7. A hierarchy of superintegrable LV systems

Consider the tall tree on n vertices depicted in figure 3.
It gives rise to the n× n matrix:

A=



a1 b1 b2 b3 · · · bn−1

c1 a2 b2 b3 · · · bn−1

c1 c2 a3 b3 · · · bn−1

c1 c2 c3 a4 · · · bn−1
...

...
...

...
. . .

...
c1 c2 c3 c4 · · · an


, (35)

of whichmatrices (23), (25), (26), and the left matrix in (31), are special cases taking n= 2,3,4
and 5 respectively.

For arbitrary n, the tall tree provides us with the LV system:

ẋ1 = x1 (a1x1 + b1x2 + b2x3 + · · ·+ bn−1xn)

ẋ2 = x2 (c1x1 + a2x2 + b2x3 + · · ·+ bn−1xn)

ẋ3 = x3 (c1x1 + c2x2 + a3x3 + · · ·+ bn−1xn)

...

ẋn−1 = xn−1 (c1x1 + c2x2 + · · ·+ an−1xn−1 + bn−1xn)

ẋn = xn (c1x1 + c2x2 + · · ·+ cn−1xn−1 + anxn) ,

(36)

The n coordinates xi, i = 1, . . . ,n, are DPs. The system (36) admits n− 1 additional DPs of
the form

Pi,i+1 = (ci− ai)xi+(ai+1 − bi)xi+1, i = 1, . . . ,n− 1,

with cofactors

Ci,i+1 = c1x1 + · · ·+ ci−1xi−1 + aixi+ ai+1xi+1 + bi+1xi+2 + · · ·bn−1xn.

Their coefficients can be organised into the following (n− 1)× n matrix:

B=



a1 a2 b2 b3 · · · bn−2 bn−1

c1 a2 a3 b3 · · · bn−2 bn−1

c1 c2 a3 a4 · · · bn−2 bn−1
...

...
...

...
. . .

...
...

c1 c2 c3 c4 · · · an−1 bn−1

c1 c2 c3 c4 · · · an−1 an


. (37)

Using the matrices A and B, and defining Z=−BA−1|A|, we obtain n− 1 integrals of
the form

Ii = P|A|
i,i+1

n∏
j=1

xZi,jj , i = 1, . . . ,n− 1.

12
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One can show, see [23], that the exponents factorise and that the integrals Ki are functionally
independent (which implies superintegrability). Introducing the notation

Nn
j = {k ∈ N : j⩽ k⩽ n},

we find, for all i ∈ Nn−1
1 , j ∈ Nn

1,

Zi,j =


(ai− ci)

∏
j<k<i(ak− ck)

∏
i<k⩽n(ak− bk−1)|ANi−1

j ∩Nn
i+1;N

n
j+1 | j< i,

(ci− ai)|Ai;i| j = i,

(bi− ai+1)|Ai+1;i+1| j = i+ 1,

(ai− ci)
∏

1<k<i(ak− ck)
∏

i<k<j(ak− bk−1)|ANi−1
1 ∩Nj

i+1;N
j−1
1 | j> i+ 1.

This formula provides a more efficient way to calculate the exponents in the integrals Ii
than using the definition of Z, which involves matrix multiplication, inversion and taking the
determinant of an n× n matrix.

The special case ai = 0 (i = 1, . . . ,n),bi =−ci+1 (i = 1, . . . ,n− 1) was studied
in [17].

8. Concluding remark

In this paper we have studied superintegrable LV systems without imposing any additional
structure. We intend to investigate the role of measure-preservation and symplectic structure
on LV equations in future work.
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Appendix. The Euler top

The Euler top, in the form 
ẋ1 = a2x2x3

ẋ2 = b2x1x3

ẋ3 = c2x1x2,

(38)

admits the six DPs

cx1 ± ax3, cx2 ± bx3, bx1 ± ax2.

13
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Figure 4. Complete graph on three vertices.

Hence, it is linearly equivalent to an LV system with three additional DPs. In terms of y=
(cx1 + ax3,cx2 + bx3,bx1 + ax2)/2, we have

ẏi = yi

n∑
j=1

Ai,jyj, i = 1,2,3, A=

−b a c
b −a c
b a −c

 , (39)

which is a special case of (24). We note that the corresponding graph, see figure 4, is not a
tree.

The additional DPs are ay2 − cy3, by1 − cy3, and ay2 − by1, and three integrals (not func-
tionally independent) are given by

y1(ay2 − cy3), y3(by1 − ay2), y2(by1 − cy3).

It is now easy to generalise system (39) whilst keeping the same number of DPs (six).
Indeed, we would take

A=

d a c
b e c
b a f

 .

The corresponding LV system has additional DPs

P1 = (a− e)y2 +( f− c)y3, P2 = (b− d)y1 +(e− a)y2, P3 = (b− d)y1 +( f− c)y3,

cofactor coefficient matrix

B=

b e f
d e c
d a f

 ,

and three integrals

P1
|A|y1

b(c−f)(a−e)y2
−(bc−df)(a−e)y3

−(c−f)(ab−de),

P2
|A|y1

−(b−d)(ac−ef)y2
−(bc−df)(a−e)y3

c(b−d)(a−e),

P3
|A|y1

−(b−d)(ac−ef)y2
a(c−f)(b−d)y3

−(c−f)(ab−de),

of which two are functionally independent.
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