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A B S T R A C T

Introduced in Zhang et al. (2012), the trilinear Boussinesq equation is the natural form of the equation for the
𝜏-function of the lattice Boussinesq system. In this paper we study various aspects of this equation: its highly
nontrivial derivation from the bilinear lattice AKP equation under dimensional reduction, a quadrilinear dual
lattice equation, conservation laws, and periodic reductions leading to higher-dimensional integrable maps and
their Laurent property. Furthermore, we consider a higher Gel’fand–Dikii lattice system, its periodic reductions
and Laurent property. As a special application, from both a trilinear Boussinesq recurrence as well as a higher
Gel’fand–Dikii system of three bilinear recurrences, we establish Somos-like integer sequences.
1. Introduction

Lattice versions of the Boussinesq (BSQ) equations were first intro-
duced in Ref. 1. They can be written as discrete equations on a regular
2D lattice with a 9-point stencil, or alternatively as multi-component
quad equations, cf. Refs. 2, 3, cf. also Ref. 4. Some of the 3-component
systems given in Ref. 4 were generalised in Ref. 5, leading to some
interesting parameter extensions, referred to here as ‘extended BSQ
systems’, cf. also Ref. 6. In Ref. 7 the various classes of extended systems
from Ref. 5 were identified within the framework of ‘direct lineari-
sation’ scheme, which allows one not only to find the interrelations
between the various BSQ systems, but also to construct their Lax pairs
and explicit solutions. Alongside, a novel trilinear equation was found
in Ref. 7 involving the BSQ 𝜏-function. It is the latter equation that
forms the focus of attention in the present paper.

This trilinear Boussinesq equation is defined on a 9-point stencil and
adopts the most general form
(

𝐴𝜏
̂
𝜏 + 𝐵𝜏

̃
𝜏 + 𝐶̂̃𝜏

̂̃
𝜏
)

𝜏 +𝐷
(

̂
̃
𝜏𝜏
̂
𝜏 + ̃

̂
𝜏𝜏
̃
𝜏
)

= 0, (1.1)

for a function 𝜏 = 𝜏(𝑛, 𝑚) of discrete variables 𝑛, 𝑚, and where the ̃
and ̂ denote elementary shifts on the lattice labelled by these discrete
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variables, i.e. 𝜏 = 𝜏(𝑛 + 1, 𝑚), 𝜏 = 𝜏(𝑛, 𝑚 + 1), while the underaccents
denote the corresponding reverse shifts, i.e.

̃
𝜏 = 𝜏(𝑛−1, 𝑚),

̂
𝜏 = 𝜏(𝑛, 𝑚−

1). In Ref. 7, Equation (71), the parameters 𝐴,𝐵, 𝐶,𝐷 were identified
as 𝐴 = 3𝑝2 − 2𝛼2𝑝 + 𝛼1, 𝐵 = 3𝑞2 − 2𝛼2𝑞 + 𝛼1, 𝐶 = −(𝑝 − 𝑞)2 and
𝐷 = 𝛼2(𝑝 + 𝑞) − (𝑝2 + 𝑝𝑞 + 𝑞2) − 𝛼1, in which case the solution struc-
ture was exhibited in the context of the direct linearisation approach,
which allows the construction of explicit soliton and inverse scattering
type solutions. Elliptic solutions, for an elliptic parametrisation of
coefficients,8, Equation (5.29) were given recently in Ref. 8.

In this paper, we will study further the trilinear BSQ (1.1) with
general coefficients. In Section 2, we show how it is obtained as a
dimensional reduction from the bilinear AKP equation (also known as
Hirota–Miwa equation), which unlike the reduction from AKP to the
bilinear Hirota form of the lattice Korteweg–de Vries (KdV) equation
is quite subtle. However, it provides a window on how to perform
higher-order reductions to multilinear equations associated with the
lattice Gel’fand–Dikii (GD) hierarchy of Ref. 1. In Section 3, we derive
conservation laws from three of the four conservation laws for the
AKP equation that were given in Ref. 9. The characteristics of these
conservation laws, give rise to a quadrilinear dual equation, cf. Refs. 9,
https://doi.org/10.1016/j.padiff.2024.100913
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10, which corresponds to a higher analogue of the discrete time Toda
(HADT) equation, which was derived in the framework of orthogonal
polynomials in two variables related via an elliptic curve, cf. Ref. 11.
In Section 4, we show how to construct initial value problems for the
trilinear BSQ equation, based on Ref. 12, and we provide an example of
a (2,1)-periodic reduction. We show that the growth of the mapping is
quadratic and prove that it possesses the Laurent property, and there-
fore gives rise to (Somos-like) integer sequences. We also show how the
conservation laws for the lattice trilinear BSQ give rise to integrals for
the reduction. In Section 5 we consider a higher lattice Gel’fand–Dikii
system. We show how to construct straight-band initial value problems
in any direction, and provide explicitly the (2,1)-periodic reduction
which is a system of 3 recurrences (of degrees 4,3,3) and equivalent
to a 10-dimensional map. We prove that this map also has the Laurent
property and therefore is able to generate coupled integer sequences.

2. Trilinear BSQ as reduction from lattice AKP

We will show how to derive the trilinear BSQ equation by dimen-
sional reduction from the bilinear AKP equation,

(𝑝 − 𝑞)̂̃𝜏 𝜏 + (𝑞 − 𝑟)𝜏̂ 𝜏 + (𝑟 − 𝑝)𝜏̃ 𝜏 = 0 , (2.1)

where 𝑝, 𝑞, 𝑟 are three lattice parameters associated with three different
lattice shift operators 𝑇𝑝, 𝑇𝑞 , 𝑇𝑟 respectively in a three-dimensional
lattice on which the function 𝜏 = 𝜏(𝑛, 𝑚, ℎ) is defined, i.e. 𝜏 = 𝑇𝑝𝜏 =
𝜏(𝑛 + 1, 𝑚, ℎ), 𝜏 = 𝑇𝑞𝜏 = 𝜏(𝑛, 𝑚 + 1, ℎ) and 𝜏 = 𝑇𝑟𝜏 = 𝜏(𝑛, 𝑚, ℎ + 1).
Eq. (2.1) actually represents an infinite parameter-family of compatible
equations, each of which lives on a 3-dimensional octahedral sublattice
of the infinite-dimensional lattice comprising independent lattice shifts
for each value of 𝑝, 𝑞, 𝑟, cf. e.g. Refs. 13, 14. The 3D consistency is also
an important instrument in the reduction procedure to 2-dimensional
lattice equations.

We will be looking at periodic reductions under multiple shifts of
the 𝜏-function of (2.1). The first such reduction (the case 𝑁 = 2 in the
framework of Ref. 1) is obtained by imposing

𝑇−𝑝◦𝑇𝑝𝜏 = 𝜏 (2.2)

for each lattice direction associated with any chosen parameter 𝑝. In
other words, 𝑇−𝑝 = 𝑇 −1

𝑝 represents the opposite, or reverse lattice shift.
It can be show that the condition (2.2) leads to a reduction to the
bilinear form of the lattice KdV equation. In fact, setting 𝑟 = −𝑝 and
= −𝑞 in (2.1) and identifying the 𝜏 with 𝑇 −1

𝑝 𝜏 =
̃
𝜏 and 𝑇 −1

𝑞 𝜏 =
̂
𝜏

espectively, which are the reverse shifts to the shifts 𝜏 and 𝜏, we get
he two 6-point bilinear lattice equations

𝑝 − 𝑞)̂̃𝜏
̃
𝜏 + (𝑞 + 𝑝)

̃
𝜏 𝜏 = 2𝑝𝜏 𝜏 , (2.3a)

𝑞 − 𝑝)̂̃𝜏
̂
𝜏 + (𝑞 + 𝑝)

̂
𝜏 𝜏 = 2𝑞𝜏 𝜏 , (2.3b)

hich are compatible, cf. Refs. 6, 15, and constitute the bilinear Hirota
orm of the lattice KdV equation.

In contrast to the reduction from lattice AKP to lattice KdV, the
eduction from lattice AKP to the lattice BSQ equation (the case 𝑁 = 3
n the framework of Ref. 1) is much more subtle, and is obtained by
mposing instead of (2.2) the following condition:

𝜔2𝑝◦𝑇𝜔𝑝◦𝑇𝑝𝜏 = 𝜏 , (2.4)

and similarly for the 𝑞-shifts) where 𝜔 = exp(2𝜋𝑖∕3) is the cube root
f unity, and which implies that there is a three-fold reversion of each
attice shift. We will show that (2.4) leads to a reduction to the trilinear
SQ lattice equation of Ref. 7.

The way to do the analysis is by first concentrating on the 𝑝-shifts
nd setting in (2.1) 𝑟 = 𝜔𝑝 and 𝑟 = 𝜔2𝑝 respectively (obviously, a
imilar analysis can subsequently be done for the 𝑞-shift leading to
omplementary conditions on the reduction). Thus, let us identify the
2 
hift 𝑇𝜔𝑝𝜏 =∶ 𝜏, which implies that 𝑇𝜔2𝑝𝜏 =
̃̄
𝜏. This leads to the following

set of equations

(𝑝 − 𝑞)̂̃𝜏𝜏 + (𝑞 − 𝜔𝑝)𝜏̂𝜏 + (𝜔 − 1)𝑝𝜏̃𝜏 , (2.5a)

𝑝 − 𝑞)̂̃𝜏
̃
𝜏 + (𝑞 − 𝜔2𝑝)

̃
𝜏𝜏̃ + (𝜔2 − 1)𝑝𝜏𝜏̂ . (2.5b)

The aim is now to eliminate the ‘alien shift’ 𝜏 =∶ 𝜑 from this system of
equations. This can be achieved as follows. First, let us rewrite (2.5) as
a linear system for 𝜑:

𝐴𝜑 + 𝐵𝜑̂ + 𝐶𝜑̃ = 0 , (2.6a)

𝐷̂̃𝜑 + 𝐸𝜑̂ + 𝐹 𝜑̃ = 0 , (2.6b)

n which the coefficients are given by a

= (𝑝 − 𝑞)̂̃𝜏 , 𝐵 = (𝑞 − 𝜔𝑝)𝜏 , 𝐶 = (𝜔 − 1)𝑝𝜏 ,

= (𝑝 − 𝑞)
̃
𝜏 , 𝐸 = (𝜔2 − 1)𝑝𝜏 , 𝐹 = (𝑞 − 𝜔2𝑝)̂

̃
𝜏 , (2.7)

and shift (2.6a) and (2.6b) in the ̂ and ̃ directions, while back-
substituting ̂̃𝜑. This will give the relations
(

𝐴 − 𝐶𝐸
𝐷

)

𝜑̂ + 𝐵̂̂𝜑 = 𝐶𝐹
𝐷
𝜑̃ , (2.8a)

(

𝐴 − 𝐵𝐹
𝐷

)

𝜑̃ + 𝐶̃̃𝜑 = 𝐵𝐸
𝐷
𝜑̂ , (2.8b)

espectively. Next, we need to get rid of the double-shifted objects
̃̃ and ̂̂𝜑. This can be done by applying a ̂ shift on (2.8b) and use
(2.6b) to rewrite ̂̃̃𝜑, and subsequently back-substituting ̂̂𝜑 and ̃̃𝜑 which
are obtained from (2.8a) and (2.8b) respectively. This leads to the
following complicated relation
(

̂̃𝐴 −
̂̃𝐵𝐹
𝐷̂

−
̂̃𝐶𝐸
𝐷̃

)

𝐸𝜑̂ + 𝐹 𝜑̃
𝐷

+
̂̃𝐶𝐹
𝐶𝐷̃

[

𝐵𝐸
𝐷
𝜑̂ −

(

𝐴 − 𝐵𝐹
𝐷

)

𝜑̃
]

+
̂̃𝐵𝐸
𝐵𝐷̂

[

𝐶𝐹
𝐷
𝜑̃ −

(

𝐴 − 𝐶𝐸
𝐷

)

𝜑̂
]

= 0 ,

which only involves 𝜑̂ and 𝜑̃. Assuming that these functions are inde-
endent, we can split the above relation into two, namely
(

̂̃𝐴 −
̂̃𝐵𝐹
𝐷̂

−
̂̃𝐶𝐸
𝐷̃

)

𝐸
𝐷

+
̂̃𝐶𝐹
𝐶𝐷̃

𝐵𝐸
𝐷

=
̂̃𝐵𝐸
𝐵𝐷̂

(

𝐴 − 𝐶𝐸
𝐷

)

,

(

̂̃𝐴 −
̂̃𝐵𝐹
𝐷̂

−
̂̃𝐶𝐹
𝐷̃

)

𝐹
𝐷

+
̂̃𝐵𝐸
𝐵𝐷̂

𝐶𝐹
𝐷

=
̂̃𝐶𝐹
𝐶𝐷̃

(

𝐴 − 𝐵𝐹
𝐷

)

,

which can be simplified to the following two relations:
̂̃𝐶𝐹
𝐶𝐷̃

𝐴
𝐹

=
̂̃𝐵𝐸
𝐵𝐷̂

𝐴
𝐸
, (2.9a)

̂̃ −
̂̃𝐵𝐹
𝐷̂

−
̂̃𝐶𝐸
𝐷̃

+
̂̃𝐵𝐸𝐶
𝐵𝐷̂

=
̂̃𝐶𝐹
𝐶𝐷̃

(

𝐴𝐷
𝐹

− 𝐵
)

. (2.9b)

he first of these relations is trivially satisfied upon inserting the
xplicit coefficients (2.7), whilst the second relation yields

𝑝 − 𝑞)2
̂̃̂
𝜏 − (𝑝2 + 𝑝𝑞 + 𝑞2)

̂̃̃𝜏̂̂
̃
𝜏
̂
̃
𝜏

− 3𝑝2
̂̂̃𝜏 𝜏
𝜏

+ 3𝑝2
̂̃̃𝜏̂̂𝜏𝜏
̂
̃
𝜏̂̃𝜏

= (𝑝 − 𝑞)2
̂̂̃𝜏𝜏̂̃̃𝜏

̃
𝜏

̂̃𝜏̂
̃
𝜏𝜏

− (𝑝2 + 𝑝𝑞 + 𝑞2)
̃̃𝜏𝜏̂̂̃𝜏
𝜏̂̃𝜏

. (2.10)

Setting by definition

𝛤 ∶= (𝑝 − 𝑞)2̂̃𝜏𝜏
̂̃
𝜏 + (𝑝2 + 𝑝𝑞 + 𝑞2)

(

̂
̃
𝜏𝜏
̂
𝜏 + ̃

̂
𝜏𝜏
̃
𝜏
)

− 3𝑝2𝜏𝜏
̂
𝜏 − 3𝑞2𝜏𝜏

̃
𝜏 ,

we can rewrite (2.10) simply as

𝛤 = 𝜏

̃̃
𝜏 ̃
𝛤 ,

a These coefficients are generalised to the elliptic case in Ref. 8.
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which can be integrated as

𝛤 = 𝛾𝜏𝜏
̃
𝜏 , (2.11)

where 𝛾 is independent of the ̃ shift, i.e., 𝛾̃ = 𝛾. Recalling that the
entire analysis so far was only taking into account the relations (2.5)
where we chose 𝑟 = 𝜔𝑝 and 𝑟 = 𝜔2𝑝 in (2.1). Obviously, we can redo
the entire analysis by choosing 𝑟 = 𝜔𝑞 and 𝑟 = 𝜔2𝑞, in which case, in
addition to the above form for 𝛤 we get

= 𝛾 ′𝜏𝜏
̂
𝜏 ,

here 𝛾 ′ is independent of the ̂ shift. Generically both forms for 𝛤 can
nly hold true if 𝛾 = 𝛾 ′ = 0, and this yields 𝛤 = 0 which is the trilinear
SQ equation.

eneralisation to the extended BSQ case

Instead of 𝜔 being a cube root of unity, the extended BSQ cases
tudied in Ref. 7 generalise the dispersion curve for the BSQ systems,
.e. the cusp cubic 𝑘3 = 𝑝3, to a dispersion relation of the formb

3 + 𝛼𝜔2 + 𝛽𝜔 = 𝑝3 + 𝛼𝑝2 + 𝛽𝑝 , (2.12)

ith roots 𝑝, 𝜔1(𝑝) and 𝜔2(𝑝), and where 𝛼 and 𝛽 are some fixed
(constant) parameters. Setting now 𝑟 = 𝜔1(𝑝) and 𝑟 = 𝜔2(𝑝) in (2.1) the
whole analysis above goes through unaltered up to (2.10), but where
the coefficients 𝐴,… , 𝐸 are changed into

𝐴 = (𝑝 − 𝑞)̂̃𝜏 , 𝐵 = (𝑞 − 𝜔1(𝑝))𝜏 , 𝐶 = (𝜔1(𝑝) − 𝑝)𝜏 ,

𝐷 = (𝑝 − 𝑞)
̃
𝜏 , 𝐸 = (𝜔2(𝑝) − 𝑝)𝜏 , 𝐹 = (𝑞 − 𝜔2(𝑝))̂̃

𝜏 . (2.13)

This change, while leaving (2.9a) still trivially satisfied, leads to some
changes in the evaluation of (2.9b). In fact, from the dispersion relation
(2.12) we can easily deduce that the following relations hold between
the roots 𝜔1(𝑝) and 𝜔2(𝑝), namely

𝜔1(𝑝) + 𝜔2(𝑝) + 𝑝 = −𝛼 , 𝜔1(𝑝)𝜔2(𝑝) = 𝑝2 + 𝛼𝑝 + 𝛽 ,

which leads to the following extended form of the 𝛤 object:

𝛤 ∶=(𝑝 − 𝑞)2̂̃𝜏𝜏
̂̃
𝜏 + (𝑝2 + 𝑝𝑞 + 𝑞2 + 𝛼(𝑝 + 𝑞) + 𝛽)

(

̂
̃
𝜏𝜏
̂
𝜏 + ̃

̂
𝜏𝜏
̃
𝜏
)

− (3𝑝2 + 2𝛼𝑝 + 𝛽)𝜏𝜏
̂
𝜏 − (3𝑞2 + 2𝛼𝑞 + 𝛽)𝜏𝜏

̃
𝜏 .

The extended trilinear BSQ equation 𝛤 = 0 is the same as Eq. (1.1)
with the given coefficients Ref. 7, Equation (71). In terms of 𝑎 = 𝑝 − 𝑞,
𝑏 = 𝑞 − 𝜔1(𝑝), and 𝑐 = 𝑞 − 𝜔2(𝑝) it reads

𝑎2̂̃𝜏𝜏
̂̃
𝜏 + 𝑏𝑐

(

̂
̃
𝜏𝜏
̂
𝜏 + ̃

̂
𝜏𝜏
̃
𝜏
)

− (𝑎 + 𝑏)(𝑎 + 𝑐)𝜏𝜏
̂
𝜏 + (𝑎𝑏 + 𝑎𝑐 − 𝑏𝑐)𝜏𝜏

̃
𝜏 = 0,

although from this form it is not immediately evident that the equation
is symmetric under the interchange of 𝑝 and 𝑞 and of the corresponding
lattice shifts (this follows from the nature of the roots 𝜔𝑖(𝑝)). We note
that in Ref. 8 elliptic solutions of the trilinear BSQ (and other lattice
BSQ equations), were constructed, which involve a parametrisation in
terms of elliptic functions as coefficients, including an ‘elliptic cube root
of unity’. The latter forms another deformation of the pure cusp cubic
BSQ lattice.

Higher Gel’fand–Dikii multilinear system

We can extend the methods of this section to obtain higher Gel’fand–
Dikii (GD) multilinear lattice equations by dimensional reduction. The
first next higher system (the case 𝑁 = 4 in the framework of Ref. 1) is
obtained by a four-fold reduction constraint

𝑇𝜔3(𝑝)◦𝑇𝜔2(𝑝)◦𝑇𝜔1(𝑝)◦𝑇𝑝𝜏 = 𝜏 , (2.14)

b In fact, (2.12) represents an unfolding of the singular dispersion curve
given by the cusp cubic. As a consequence the corresponding solutions of the
BSQ system in Ref. 16 possess a smoother behaviour than the ‘pure BSQ’ case
given by the cube root of unity case.
 ̃

3 
for each lattice direction labelled by the lattice parameter 𝑝, and where
𝜔𝑖, 𝑖 = 1, 2, 3, are the roots of the quartic polynomial dispersion curve

4 + 𝛼𝜔3 + 𝛽𝜔2 + 𝛾𝜔 = 𝑝4 + 𝛼𝑝3 + 𝛽𝑝2 + 𝛾𝑝 , (2.15)

ith constants 𝛼, 𝛽 and 𝛾. Following the same procedure as before,
etting subsequently 𝑟 = 𝜔1(𝑝), 𝑟 = 𝜔2(𝑝) and 𝑟 = 𝜔3(𝑝) in (2.1) with
he various ‘alien’ lattice shifted objects, it is now convenient to choose
∶= 𝑇 −1

𝜔1(𝑝)
𝜏, 𝜓 ∶= 𝑇𝜔2(𝑝)𝜏, in which case we get the following coupled

ystem

𝑝 − 𝑞)𝜏 ̂̃𝜑 + (𝑞 − 𝜔1(𝑝))𝜏𝜑̃ + (𝜔1(𝑝) − 𝑝)𝜏𝜑̂ = 0 , (2.16a)

(𝑝 − 𝑞)̂̃𝜏𝜓 + (𝑞 − 𝜔2(𝑝))𝜏𝜓̂ + (𝜔2(𝑝) − 𝑝)𝜏𝜓̃ = 0 , (2.16b)

𝑝 − 𝑞)
̃
𝜑̂̃𝜓 + (𝑞 − 𝜔3(𝑝))̂

̃
𝜑𝜓̃ + (𝜔3(𝑝) − 𝑝)𝜑𝜓̂ = 0 , (2.16c)

here the first two equations are linear, in 𝜑 and 𝜓 respectively,
ut where the last equation couples the other ones. Because of the
onlinearity of (2.16c), the analysis is distinctly more complicated in
his case, however, we note that the two Eqs. (2.16b) and (2.16c)
xhibit the same structure as the system comprising (2.6a) and (2.6b)
f the trilinear case, but now for the function 𝜓 . Thus, we can use the
xact same procedure as in the trilinear case to eliminate 𝜓 , i.e. use the
qs. (2.9), where now the coefficients 𝐴,… , 𝐹 are identified as

𝐴 = (𝑝 − 𝑞)̂̃𝜏 , 𝐵 = (𝑞 − 𝜔2(𝑝))𝜏 , 𝐶 = (𝜔2(𝑝) − 𝑝)𝜏 ,

𝐷 = (𝑝 − 𝑞)
̃
𝜑 , 𝐸 = (𝜔3(𝑝) − 𝑝)𝜑 , 𝐹 = (𝑞 − 𝜔3(𝑝))̂

̃
𝜑 . (2.17)

nce again, the relation (2.9a) is trivially satisfied with these coeffi-
ients, while (2.9b) gives rise to the following bilinear equation in both
and 𝜑, namely

(𝑝 − 𝑞)2
(

̂̃̂
𝜏 ̂̃𝜏 𝜑 ̂

̃
𝜑 − ̂̂̃𝜏 ̂̃̃𝜏

̃
𝜑𝜑̂

)

+ (3𝑝2 + 2𝑝(𝛼 + 𝜔1(𝑝)) + 𝜔2
1(𝑝) + 𝛽)

×
(

̂̃̃𝜏 ̂̂𝜏 𝜑̂ 𝜑 − ̂̂̃𝜏 ̂̃𝜏 𝜑̃ ̂
̃
𝜑
)

+ (𝑝2 + 𝑝𝑞 + 𝑞2 + (𝛼 + 𝜔1(𝑝))(𝑝 + 𝑞) + 𝜔2
1(𝑝) + 𝛽)

(

̃̃𝜏 ̂̂̃𝜏 𝜑̂ ̂
̃
𝜑 − ̂̃̃𝜏 ̂̃𝜏 𝜑 ̂̂

̃
𝜑
)

= 0.

(2.18)

Thus we get a coupled system for 𝜑 comprising the linear equa-
tion (2.16a) together with the bilinear equation (2.18), from which
we would still like to eliminate 𝜑. However, we will refrain from that
particular computation for the present paperc. We just mention here,
without proof, that from the direct linearisation method designed in
Ref. 7, and elaborated in Ref. 17 for the case 𝑁 = 4, the following
10-term 16-point sextic equation for the 𝜏-, 𝜑- and 𝜓-functions can be
derived:

(𝑝 − 𝑞)3 𝜏𝜏

(

𝜏
̂̃
𝜏̂̂̃𝜏̂̃̃𝜏 −

̂
𝜏
̃
𝜏̂̃𝜏
̂̃̂
𝜏

)

= (4𝑝3 + 3𝛼𝑝2 + 2𝛽𝑝 + 𝛾)𝜏𝜏
(

̂
𝜏𝜏̂̂𝜏̂̃̃𝜏 −

̃
𝜏
̂
𝜏̂̃𝜏̂̂̃𝜏

)

− (4𝑞3 + 3𝛼𝑞2 + 2𝛽𝑞 + 𝛾)𝜏𝜏
(

̃
𝜏𝜏̃̃𝜏̂̂̃𝜏 −

̂
𝜏
̃
𝜏̂̃𝜏̂̃̃𝜏

)

+
[

𝑝3 + 𝑝2𝑞 + 𝑝𝑞2 + 𝑞3 + 𝛾

+ 𝛼(𝑝2 + 𝑝𝑞 + 𝑞2) + 𝛽(𝑝 + 𝑞)
]

×
[

̃
𝜏𝜏̂̂̃𝜏

(

𝜏̃̃
̂
𝜏̂̃𝜏 + ̃

̂
𝜏𝜏̃̃𝜏

)

−
̂
𝜏𝜏̂̃̃𝜏

(

𝜏̂̂
̃
𝜏̂̃𝜏 + ̂

̃
𝜏𝜏̂̂𝜏

)

]

,

(2.19)

which was absent from Ref. 17. Due to its complicated structure we will
for now abstain from doing further analysis on this equation (including
the question of whether this equation can be seen as a consequence of
a pair of 7-term 12-point quadrilinear equations that one would expect
to govern the 𝑁 = 4 𝜏-function structure).

c Furthermore, there is a companion system with another function 𝜒 =
𝑇 −1
𝜔1(𝑞)

𝜏 where the root 𝜔1(𝑞) appears (from the dispersion curve (2.15) with
replaced by 𝑞), and where the roles of 𝑝 and 𝑞 and the corresponding shifts
and ̂ are reversed.
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3. A dual to the trilinear Boussinesq equation, and a matrix con-
servation law

Taking 𝐷 = 0 in the trilinear Boussinesq equation (1.1) and dividing
by 𝜏 yields

𝐴𝜏
̂
𝜏 + 𝐵𝜏

̃
𝜏 + 𝐶̂̃𝜏

̂̃
𝜏 = 0. (3.1)

This 2D lattice equation can be obtained from the 3D AKP equa-
tion (2.1) by the following reduction:

𝜏 ↦
̂̃
𝜏, 𝜏 ↦ 𝜏, 𝜏 ↦ 𝜏, (3.2)

whilst setting 𝐴 = 𝑟 − 𝑝, 𝐵 = 𝑝 − 𝑞, 𝐶 = 𝑞 − 𝑟. Thus, if 𝜏(𝑘, 𝑙, 𝑚) satisfies
(2.1) then 𝜏(𝑚 − 𝑘, 𝑙 − 𝑘) satisfies (3.1).

In Ref. 9, the following dual to the AKP equation (2.1) was derived,

𝑎1
(

̃
𝜏̂𝜏𝜏̂̃𝜏 − 𝜏𝜏𝜏̂̃̃𝜏

)

+ 𝑎2
(

𝜏𝜏̂̃
̂
𝜏̂̃𝜏 − 𝜏̂̂𝜏𝜏𝜏

)

+ 𝑎3
(

𝜏𝜏̂𝜏̂̃
̄
𝜏 − 𝜏𝜏𝜏̂̃𝜏

)

+ 𝑎4

(

𝜏𝜏̂𝜏̂̃𝜏 − 𝜏𝜏𝜏̂̃𝜏
)

= 0, (3.3)

employing the characteristics (denoted 𝛬1, 𝛬2, 𝛬3, 𝛬7 in Ref. 18),

𝑊 =

(

̂
̃
𝜏

𝜏̂𝜏𝜏
−

̃̃𝜏
𝜏 ̃̂𝜏𝜏̃

,
̃
̂
𝜏

𝜏̃𝜏𝜏
−

̂̂𝜏
𝜏𝜏̂ ̃̂𝜏

, ̄
̃̂𝜏
̃̂𝜏𝜏𝜏

− 𝜏
𝜏𝜏̃𝜏̂

, 𝜏
𝜏𝜏𝜏

−
̃̂𝜏
̃̂𝜏𝜏̂𝜏̃

)

. (3.4)

Reductions of the dual Eq. (3.3) include Rutishauser’s quotient-
difference (QD) algorithm, the higher analogue of the discrete time
Toda (HADT) equation and its corresponding quotient-quotient-
difference (QQD) system, the discrete hungry Lotka–Volterra system,
discrete hungry QD, as well as the hungry forms of HADT and QQD.
In Ref. 9, it was conjectured that (3.3) has the Laurent property,
vanishing algebraic entropy and that it admits N-soliton solutions. The
latter was established in Ref. 19 by relating it to a 14-point equation
found by King and Schief,20 which itself is a consequence of the lattice
BKP equation (also known as the Miwa equation). From three of the
four characteristics (3.4), we obtain three characteristics for (1.1). As
we shall see, 𝑊1 does not provide us with a characteristic for (1.1).
Applying the reduction (3.2) to (3.4), and dividing by −𝜏 gives us

𝑋 =
⎛

⎜

⎜

⎝

̂̃̂
̃
𝜏

𝜏
̃
𝜏
̂
𝜏
̂̃
𝜏
−

̂̃̂
𝜏

𝜏𝜏𝜏̂̃𝜏
,
̂̂𝜏

𝜏𝜏
̃
𝜏̂̃𝜏

− ̂̂
𝜏

𝜏
̂
𝜏𝜏
̃̂
𝜏
,
̃̃𝜏

𝜏
̂
𝜏𝜏̂̃𝜏

− ̃̃
𝜏

𝜏𝜏
̃̂
𝜏
̃
𝜏
, 1

̂
𝜏
̃
𝜏̂̃𝜏

− 1
𝜏𝜏
̃̂
𝜏

⎞

⎟

⎟

⎠

,

hich are four characteristics for Eq. (1.1) when 𝐷 = 0, i.e. 𝜏(𝐴𝜏
̂
𝜏 +

𝜏
̃
𝜏+𝐶̂̃𝜏

̂̃
𝜏) = 0. The question is whether they are also characteristics for

he remaining term of (1.1), 𝑇 = 𝐷
(

̂
̃
𝜏𝜏
̂
𝜏 + ̃

̂
𝜏𝜏
̃
𝜏
)

. One can verify whether
n expression 𝑍[𝜏] is a divergence, by checking whether it is in kernel
f the discrete Euler operator, i.e. whether

(𝑍) =
∑

𝜎
𝜎−1

(

𝜕𝑍[𝜏]
𝜕𝜎(𝜏)

)

= 0,

where the sum is over all applicable shifts on the lattice, cf. Ref. 21.
Surprisingly, 𝐸(𝑇𝑋𝑖) = 0 for 𝑖 = 2, 3, 4. Thus, by taking a linear
ombination, and multiplying by the common denominator we obtain
quadrilinear dual equation,

(𝜏
̃
𝜏
̃̂
𝜏̃̃𝜏 −

̂
𝜏𝜏̂̃𝜏

̃̃
𝜏) + 𝑦(

̂
𝜏𝜏
̃̂
𝜏̂̂𝜏 − ̂̃𝜏𝜏

̃
𝜏
̂̂
𝜏) + 𝑧(𝜏𝜏𝜏

̃̂
𝜏 − 𝜏

̂
𝜏̂̃𝜏
̃
𝜏) = 0. (3.5)

Comparing the stencil on which Eq. (3.5) is defined, depicted in
ig. 1, with the stencil of the HADT equation, cf. Ref. 11, Figure 1, it is
lear which transformation on the independent variables could relate
he two equations. Indeed, if 𝜎(𝑙, 𝑘) satisfies the HADT equation

̂̂
𝜎
̃
𝜎̂
(

̂
𝜎 ̂̂𝜎 − 𝜎𝜎̂

)

=
̂
𝜎
̃
̂̂𝜎
(

̃
𝜎̂
̂̂
̃̃𝜎 − 𝜎

̂
𝜎
)

+ 𝜎̂
̂
𝜎
(

−
̃̃
̂̂𝜎
̂̂
𝜎 +

̃
̂̂𝜎
̂̂
𝜎
)

,

hen 𝜏(𝑙, 𝑘) = 𝜎(𝑙,−𝑙 − 𝑘) satisfies Eq. (3.5), with 𝑥 = 𝑦 = 1, 𝑧 = −1.
A matrix conservation law is given by

̃ − 𝑃 + 𝑄̂ −𝑄 = 𝑉 𝑇𝑈, (3.6)
4 
Fig. 1. The stencil of the dual Eq. (3.5).

where 𝑃 ,𝑄 are the 4 × 3 matrices

𝑃 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

̂
̃
𝜏𝜏
𝜏𝜏

+ ̃̃
𝜏𝜏

̃
𝜏̂
̃
𝜏

0 0

𝜏
̃̃
𝜏

𝜏
̃̂
𝜏

𝜏̂̂
̃
𝜏
𝜏̂
̃
𝜏

̃
𝜏𝜏
𝜏
̃̂
𝜏

̃̂̃
𝜏𝜏

̃̂
𝜏𝜏

− ̃̂
𝜏̂̂𝜏

𝜏
̃
𝜏

− ̃̂
𝜏𝜏

̂
𝜏
̃
𝜏

𝜏
̃̃
𝜏

̃
𝜏𝜏

+ ̂
𝜏
̃̃
𝜏𝜏̂
̃
𝜏

𝜏𝜏
̃̂
𝜏
̃
𝜏 ̂

𝜏̂̂
̃
𝜏
𝜏
̃
𝜏 ̂

𝜏̂
̃
𝜏
𝜏
̃̂
𝜏

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, 𝑄 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

̃̃
𝜏
̂
𝜏

̃̂
𝜏
̃
𝜏

𝜏
̂̂
𝜏

𝜏
̃̂
𝜏

𝜏
̂
𝜏
𝜏
̃̂
𝜏

0 ̂
𝜏̂
̃
𝜏
𝜏
̃
𝜏
+ ̃
𝜏
̂̂
𝜏

̂
𝜏
̃̂
𝜏

0

− ̃̂̃
𝜏𝜏

̃̂
𝜏𝜏

̂̃𝜏
̂̂
𝜏

̂
𝜏𝜏

− ̂
𝜏𝜏
̃
̂
𝜏𝜏

̃̃
𝜏̃
̂
𝜏

𝜏
̃̂
𝜏 ̂̂

𝜏̂
̃
𝜏

𝜏
̃̂
𝜏
+
𝜏
̂̂
𝜏
̃
𝜏̃
̂
𝜏

𝜏
̂
𝜏𝜏
̃̂
𝜏

̃
𝜏̃
̂
𝜏
𝜏
̃̂
𝜏

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

𝑈 = (𝑋2, 𝑋3, 𝑋4) and 𝑉 𝑇 denotes the transpose of 𝑉 =
(

𝜏𝜏
̂
𝜏, 𝜏𝜏

̃
𝜏, ̂̃𝜏𝜏

̃̂
𝜏,

𝜏
̂
𝜏̂
̃
𝜏 + 𝜏

̃
𝜏̃
̂
𝜏
)

. Denoting two vectors of coefficients by 𝑆 = (𝐴,𝐵, 𝐶,𝐷) and
𝑌 = (𝑦, 𝑥, 𝑧), we have that 𝑆𝑉 𝑇 = 0 represents the trilinear Boussinesq
equation (1.1) and the equation 𝑈𝑌 𝑇 = 0 is equivalent to dual (3.5).
Hence, pre-multiplying (3.6) with 𝑆 gives three conservation laws for
the trilinear Boussinesq equation, and post-multiplying (3.6) with 𝑌 𝑇
yields four conservation laws for (a rational version of) Eq. (3.5).

In Ref. 9 it was conjectured that reductions of (3.3), such as
Eq. (3.5), possess the Laurent property, and have vanishing algebraic
entropy. It seems that this also holds true for the trilinear Boussinesq
equation itself!

4. Periodic reduction, growth and laurentness of trilinear BSQ,
integrals from conservation laws

A periodic reduction of a lattice equation is a mapping, whose
iterates provide a periodic solution. Geometrically, one rolls up the
lattice to form a cylinder, cf. Ref. 22, Figure 1. Algebraically, one
chooses a vector 𝐬 ∈ Z2, compatible with the lattice equation, and
imposes the periodicity condition 𝜏(𝑙, 𝑘) = 𝜏((𝑙, 𝑘) + 𝐬).

How to pose initial values problems (IVPs, Cauchy problems) for
lattice equations, on arbitrary stencils, was described in Ref. 12. We
summarise the construction and apply it to the trilinear BSQ.

For a given stencil 𝑆, one defines the 𝑆-directions as the directions
of the edges of the convex hull of 𝑆. For each 𝐬 whose direction is not
an 𝑆-directiond the 𝐬-periodic reduction is a mapping of dimension

𝐷(𝐬,𝐝) ∶=
|

|

|

|

|

det
(

𝐬
𝐝

)

|

|

|

|

|

,

where 𝐝 is the difference between two points 𝑝1 ∈ 𝑙1, 𝑝2 ∈ 𝑙2 on two
lines 𝑙1, 𝑙2 with direction 𝐬̂ which squeeze the stencil. The mapping
corresponds to a shift on the lattice 𝐚 → 𝐜, where 𝐜 is (0, 1) or (1, 0)
r the unique lattice point inside the parallelogram spanned by 𝐬̂ and

(1, 0) such that 𝐷(𝐬, 𝐜) = 1.
For a low-dimensional example we give a formula for its growth and

prove that it has the Laurent property.

d If the direction 𝐬̂ is an 𝑆-direction, then one has to augment the IVP with
values in an additional direction. Such a problem is called a Goursat problem.
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Fig. 2. The (2,1)-reduction of trilinear Boussinesq gives rise to a six-dimensional mapping.
(2,1)-reduction of trilinear BSQ

We squeeze the 9-point square stencil using two lines with direction
𝐬 = (2, 1), see Fig. 2(a). The difference between the points where
the lines touch the stencil is 𝐝 = (2,−2), or alternatively one could
e.g. choose points on the lines such that the difference is 𝐝 = (0, 3).
The dimension of the reduction is

𝐷(𝐬,𝐝) =
|

|

|

|

|

det
(

2 1
2 −2

)

|

|

|

|

|

= 6.

We take 𝐜 = (1, 0) (so that 𝐷(𝐬, 𝐜) = 1). Now we start labelling the
initial values in steps of 𝐜, whilst making horse-jumps (-𝐬) at the right
boundary of the stencil, see Fig. 2(b).

The mapping takes the form

(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6) ↦ (𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7), (4.1a)

where 𝑥7 is determined by by taking 𝑛 = 1 in the recursion
(

𝐴𝑥𝑛+1𝑥𝑛+5 + (𝐵 +𝐶)𝑥𝑛+2𝑥𝑛+4
)

𝑥𝑛+3 +𝐷
(

𝑥𝑛𝑥𝑛+4𝑥𝑛+5 + 𝑥𝑛+1𝑥𝑛+2𝑥𝑛+6
)

= 0.

(4.1b)

s 𝐶,𝐷 can be absorbed into 𝐴,𝐵 we take, without loss of generality,
= 0, 𝐷 = 1. Starting with initial values linear in a variable 𝑧, e.g. such

s 𝑝 = [3 − 2𝑧, 15 − 4𝑧,−5𝑧 + 1, 5 + 3𝑧, 1 − 𝑧, 8 + 3𝑧], the 𝑧-degree of the
umerator of the last component of the 𝑛th iterate is given by
1
4

(

𝑛2 + 3𝑛 + 1 + (−1)⌊(𝑛+2)∕2⌋
)

,

t least for the first 16 iterates we computed.
If for all 𝑛, the denominator of the 𝑛th iterate of a map is a product of

owers of the initial values, then the map is said to have the Laurent
roperty. For the above map the denominators are monomials in the
nitial values (but not the first nor the last one). And this can be proven
s follows.

roposition 1. The mapping (4.1) has the Laurent property.

roof. For general initial values, 𝑝0,… , 𝑝5 we write the first 7 iterates
as 𝑝𝑖∕𝑞𝑖, with (𝑝𝑖, 𝑞𝑖) = 1 (co-prime), 𝑖 = 6, 7,… , 12. The first few
numerators are

𝑝6 = −𝑝0𝑝4𝑝5 − 𝐴𝑝1𝑝3𝑝5 − 𝐵𝑝2𝑝3𝑝4
𝑝7 = 𝑝0𝑝1𝑝4𝑝

2
5 + 𝐴𝑝0𝑝2𝑝

2
4𝑝5 + 𝐴𝑝

2
1𝑝3𝑝

2
5 + 𝐴

2𝑝1𝑝2𝑝3𝑝4𝑝5 + 𝐴𝐵𝑝22𝑝3𝑝
2
4

𝑝8 = 𝑝20𝑝1𝑝4𝑝
3
5 + 𝐴𝑝

2
0𝑝2𝑝

2
4𝑝

2
5 + 𝐴𝑝0𝑝

2
1𝑝3𝑝

3
5 +

(

𝐴2 + 2𝐵 + 2𝐶
)

𝑝0𝑝1𝑝2𝑝3𝑝4𝑝
2
5

+ 𝐴𝐵2𝑝32𝑝
2
3𝑝

2
4

+ 2𝐴𝐵𝑝0𝑝22𝑝3𝑝
2
4𝑝5 + 2𝐴𝐵𝑝21𝑝2𝑝

2
3𝑝

2
5 + 𝐵

(

𝐴2 + 𝐵 + 𝐶
)

𝑝1𝑝
2
2𝑝

2
3𝑝4𝑝5

𝑝9 = −𝑝30𝑝1𝑝
2
4𝑝

4
5 − 𝐴𝑝

3
0𝑝2𝑝

3
4𝑝

3
5 − 2𝐴𝑝20𝑝

2
1𝑝3𝑝4𝑝

4
5 −

(

2𝐴2 + 𝐵 + 𝐶
)

× 𝑝20𝑝1𝑝2𝑝3𝑝
2
4𝑝

3
5 − 𝐴

2𝑝0𝑝
3
1𝑝

2
3𝑝

4
5

− 𝐴𝐵𝑝2𝑝2𝑝 𝑝3𝑝2 − 𝐴
(

𝐴2 + 2𝐵 + 2𝐶
)

𝑝 𝑝2𝑝 𝑝2𝑝 𝑝3
0 2 3 4 5 0 1 2 3 4 5

5 
− 𝐴2𝐵𝑝0𝑝1𝑝
2
2𝑝

2
3𝑝

2
4𝑝

2
5 + 𝐴𝐵

3𝑝42𝑝
3
3𝑝

3
4

+ 𝐴𝐵2𝑝0𝑝
3
2𝑝

2
3𝑝

3
4𝑝5 − 𝐴

2𝐵𝑝31𝑝2𝑝
3
3𝑝

3
5 + 𝐴

2𝐵2𝑝1𝑝
3
2𝑝

3
3𝑝

2
4𝑝5

⋮

and the denominators are

𝑞6 =𝑝1𝑝2, 𝑞7 = 𝑝1𝑝
2
2𝑝3, 𝑞8 = 𝑝21𝑝

2
2𝑝

2
3, 𝑞9 = 𝑝21𝑝

4
2𝑝

2
3𝑝4, 𝑞10 = 𝑝31𝑝

5
2𝑝

4
3𝑝4,

𝑞11 =𝑝41𝑝
6
2𝑝

5
3𝑝

2
4, 𝑞12 = 𝑝51𝑝

8
2𝑝

6
3𝑝

2
4.

We have verified that the 𝑞𝑖 are monomials in 𝑝1, 𝑝2, 𝑝3, 𝑝4 and that
(𝑝6, 𝑝𝑖) = 1 for 𝑖 = 7,… , 12. This establishes the Laurent property,
cf. Ref. 23, Theorem 2, that all iterates are Laurent polynomials in
𝑝1, 𝑝2, 𝑝3, 𝑝4. □

Hence, if one starts with initial values 𝑝1 = 𝑝2 = 𝑝3 = 𝑝4 = 1, one
obtains a polynomial (or integer) sequence. E.g. for 𝐴 = −5, 𝐵 = −3
and 𝑝0 = 4, 𝑝5 = 2, we obtain

… , 1, 2, 5, 21, 135, 585, 8640, 228825, 2193075, 72444375, 7923227625,

265006991250, 15144850614375,… ,

(4.2)

which is an example of an integer sequence obtained from a trilinear
recursion equation (4.1b). As pointed out by M. Somos24, it also
satisfies the bilinear recursion relation

𝑝𝑛+4𝑝𝑛−3 = −3𝑝𝑛+3𝑝𝑛−2 + 99𝑝𝑛+1𝑝𝑛. (4.3)

A similar statement holds true for all values of 𝐴,𝐵, 𝑝0 = 𝑎, 𝑝1 = 𝑝2 =
𝑝3 = 𝑝4 = 1, 𝑝5 = 𝑏. With extra initial value 𝑝6 = −𝑏(𝐴 + 𝑎) − 𝐵, the
(polynomial) iterates of the map (4.1) are generated by

𝑝𝑛+4𝑝𝑛−3 = 𝐵𝑝𝑛+3𝑝𝑛−2 + 𝑌 𝑝𝑛+1𝑝𝑛,

where 𝑌 = 𝑎𝑏(𝐴2 + 𝑎𝑏 + 𝐵) + (𝑎 + 𝑏)(𝑎𝑏 + 𝐵)𝐴 + 𝐵2. It remains an
open question whether integer sequences arising from higher periodic
reductions of the trilinear lattice equation Eq. (1.1) are all of Somos
type (i.e., admit a bilinear recurrence).

Integrals from conservation laws

The initial values in Fig. 2(b) are labelled according to the values
of a new variable, in terms of the lattice variables 𝑙, 𝑚 the new variable
is 𝑛 = 𝑙 − 2𝑚. More generally, if 𝐬 is in the first quadrant, and
gcd(𝑠1, 𝑠2) = 1, then the variable 𝑛(𝑙, 𝑚) = 𝑠2𝑙 − 𝑠1𝑚 has the properties
that 𝑛((𝑙, 𝑚) + 𝑘𝐬) = 𝑛(𝑙, 𝑚) and, with 𝐷(𝐬, 𝐜) = 1, 𝑛((𝑙, 𝑚) + 𝐜) = 𝑛(𝑙, 𝑚) + 1.

A conservation law for a lattice equation

𝑃 − 𝑃 + 𝑄̂ −𝑄 ≡ 0 (modulo the equation)

reduces to
𝑃𝑛+𝑠2 − 𝑃𝑛 +𝑄𝑛−𝑠1 −𝑄𝑛 ≡ 0 (modulo the reduction), (4.4)
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Fig. 3. Stencils of the higher GD system, 𝜏, 𝜑, 𝜓 are represented by ∙, ◦,×.
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and this gives rise to an integral. When 𝐬 is in the fourth quadrant,
𝑠1 > 0, 𝑠2 < 0, and gcd(𝑠1, 𝑠2) = 1, we take 𝑛(𝑙, 𝑚) = |𝑠2|𝑙+𝑠1𝑚, cf. Ref. 12,
and then the conservation law reduces to

𝑃𝑛+|𝑠2| − 𝑃𝑛 +𝑄𝑛+𝑠1 −𝑄𝑛 ≡ 0 (modulo the reduction). (4.5)

Lemma 2. The expression 𝐾𝑛 =
∑𝑠2−1
𝑖=0 𝑃𝑛+𝑖 −

∑𝑠1
𝑗=1𝑄𝑛−𝑗 does not depend

n 𝑛 if (4.4) holds. The expression 𝐿𝑛 =
∑

|𝑠2|−1
𝑖=0 𝑃𝑛+𝑖+

∑𝑠1−1
𝑗=0 𝑄𝑛+𝑗 does not

epend on 𝑛 if (4.5) holds.

roof. We have

𝑛+1 =
𝑠2−1
∑

𝑖=0
𝑃𝑛+𝑖+1 −

𝑠1
∑

𝑗=1
𝑄𝑛−𝑗+1 =

𝑠2−2
∑

𝑖=0
𝑃𝑛+𝑖+1 −

𝑠1
∑

𝑗=2
𝑄𝑛−(𝑗−1) + 𝑃𝑛+𝑠2 −𝑄𝑛

=
𝑠2−1
∑

𝑖=1
𝑃𝑛+𝑖 −

𝑠1−1
∑

𝑗=1
𝑄𝑛−𝑗 + 𝑃𝑛 −𝑄𝑛−𝑠1 =

𝑠2−1
∑

𝑖=0
𝑃𝑛+𝑖 −

𝑠1
∑

𝑗=1
𝑄𝑛−𝑗 = 𝐾𝑛.

The proof for the second statement is similar. □

Considering the three conservation laws we obtain by pre-
ultiplying (3.6) with (𝐴,𝐵, 0, 1), and Lemma 2 to construct integrals

or the mapping (4.1), the first conservation law yields a constant (a
unction of 𝐵 only), the second gives an expression which depends on
7 and 𝑥8 so we rewrite the invariant function in terms of the initial
alues (and we have subtracted a constant), to get
(

𝐴2 + 𝐵
) 𝑥1𝑥6
𝑥3𝑥4

+ 𝐴𝐵
(

𝑥1𝑥5
𝑥2𝑥4

+
𝑥2𝑥6
𝑥3𝑥5

)

+ 𝐴
𝑥1𝑥6
𝑥3𝑥4

(

𝑥5𝑥1
𝑥2𝑥4

+
𝑥2𝑥6
𝑥3𝑥5

)

+
(

𝑥1𝑥6
𝑥3𝑥4

)2
. (4.6)

The third conservation law directly yields
𝐵𝑥3𝑥4 + 𝑥6𝑥1

𝑥2𝑥5
−
𝐴𝑥2𝑥4 + 𝑥1𝑥5

𝑥23
−
𝐴𝑥3𝑥5 + 𝑥2𝑥6

𝑥24
. (4.7)

In terms of variables 𝑥𝑖 = 𝑦𝑖𝑦−2𝑖+1𝑦𝑖+2 the integral (4.6) is polynomial
(

𝐴2 + 𝐵
)

𝑦1𝑦
2
2𝑦

2
3𝑦4+𝐴𝐵𝑦2𝑦3

(

𝑦1 + 𝑦4
)

+𝐴𝑦1𝑦32𝑦
3
3𝑦4

(

𝑦1 + 𝑦4
)

+
(

𝑦1𝑦
2
2𝑦

2
3𝑦4

)2

and (4.7) becomes

𝐴
(

𝑦2 + 𝑦3
)

− 𝐵
𝑦2𝑦3

+ 𝑦2𝑦3
(

𝑦1𝑦2 − 𝑦1𝑦4 + 𝑦3𝑦4
)

,

whereas the mapping (4.1) reduces to

(

𝑦1, 𝑦2, 𝑦3, 𝑦4
)

↦

(

𝑦2, 𝑦3, 𝑦4,−
𝑦1𝑦22𝑦

2
3𝑦4 + 𝐴𝑦2𝑦3𝑦4 + 𝐵

𝑦2𝑦23𝑦
2
4

)

. (4.8)

This mapping has quadratic growth, but it does not possess the Laurent
property. In fact, the mapping (4.1) is the Laurentification of (4.8),
cf. Refs. 23, 25.

5. Periodic reduction of a higher Gel’fand–Dikii multilinear sys-
tem

How to algorithmically perform periodic reduction for systems of
lattice equations in general is an open problem, cf. Refs. 11, 12. We
provide the solution to this problem for the higher Gel’fand–Dikii (GD)
multilinear system 2.16, which is defined on the stencils given in Fig. 3.
6 
Proposition 3. A well-posed initial value (Cauchy) problem (IVP) with
direction 𝐬 > 𝟎 can be obtained by squeezing the combined stencil in
Fig. 4(a). For directions 𝐬 with 𝑠1 > 0, 𝑠2 < 0, a well-posed IVP can be
btained by squeezing the combined stencil in Fig. 4(b).

roof. As in the scalar case, to obtain straight band initial values, the
ombined stencil is squeezed by lines with direction 𝐬 in the allowed
egion. Here we obtain three different bands, in which the initial values
re given, one band for each variable. We need to show, for each
ombined stencil, that one can determine the value of each variable on
he boundaries of its band, using one of the equations, in each direction.

e start with the combined stencil in 4(a), solving for the variables
n the boundaries on the right. In order, one first solves Eq. (2.16a)
or 𝜑, then Eq. (2.16c) for 𝜓 , and finally Eq. (2.16b) for 𝜏. To find
he variables on the left boundaries, we first solve Eq. (2.16b) for 𝜓 ,
hen Eq. (2.16c) for 𝜑, and then Eq. (2.16a) for 𝜏. Next, we consider
he combined stencil in 4(b) for descending bands. To determine the
alues of the variables on the boundaries on the right, one first solves
q. (2.16a) for 𝜑, then Eq. (2.16b) for 𝜏, and finally Eq. (2.16c) for 𝜓 .
o find the values on the left boundaries, we first solve Eq. (2.16a) for
, then Eq. (2.16b) for 𝜓 , and then Eq. (2.16c) for 𝜑. □

Let us use Proposition 3 to construct a well-posed IVP for the higher
D system 2.16. In Fig. 5(a) we squeeze the combined stencil with lines

hat have direction 𝐬 = (2, 1).
The initial value configuration in Fig. 5(b) leads to the following

0-dimensional mapping
(

𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑦0, 𝑦1, 𝑦2, 𝑧1, 𝑧2, 𝑧3
)

↦
(

𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑦1, 𝑦2, 𝑦3, 𝑧2, 𝑧3, 𝑧4
)

,

(5.1)

here 𝑦3 is determined by taking 𝑛 = 0 in

𝑥𝑛+2𝑦𝑛+1 + 𝑏𝑥𝑛𝑦𝑛+3 = (𝑎 + 𝑏) 𝑥𝑛+3𝑦𝑛, (5.2a)

fter which 𝑧4 can be found from, with 𝑛 = 0,

𝑦𝑛+2𝑧𝑛+2 + 𝑑𝑦𝑛𝑧𝑛+4 = (𝑎 + 𝑑) 𝑦𝑛+3𝑧𝑛+1, (5.2b)

nd then 𝑥4 is the solution of, with 𝑛 = 0,

𝑥𝑛+2𝑧𝑛+3 + 𝑐𝑥𝑛+4𝑧𝑛+1 = (𝑎 + 𝑐) 𝑥𝑛+1𝑧𝑛+4. (5.2c)

ere 𝑥, 𝑦, 𝑧 denote the reductions of 𝜏, 𝜑, 𝜓 , and

= 𝑝 − 𝑞, 𝑏 = 𝑞 − 𝜔1(𝑝), 𝑐 = 𝑞 − 𝜔2(𝑝), 𝑑 = 𝑞 − 𝜔3(𝑝).

he inverse of the map Eq. (5.1) is given by
(

𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑦0, 𝑦1, 𝑦2, 𝑧1, 𝑧2
𝑧3
)

↦
(

𝑥−1, 𝑥0, 𝑥1, 𝑥2, 𝑦−1, 𝑦1, 𝑦2, 𝑧0, 𝑧1, 𝑧2
)

, where we obtain 𝑧0 from
5.2c) (𝑛 = −1), 𝑦−1 from (5.2b) (𝑛 = −1), and 𝑥−1 from (5.2a) (𝑛 = −1),
n that order.

roposition 4. The mapping (5.1) has the Laurent property.

roof. To aid the proof we shift the index on the 𝑦-variable, so that
he map becomes

∶
(

𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑦1, 𝑦2, 𝑦3, 𝑧1, 𝑧2, 𝑧3
)

↦
(

𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑦2, 𝑦3, 𝑦4, 𝑧2, 𝑧3, 𝑧4
)

,
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Fig. 4. Combined stencils which can be used to construct Cauchy problems for the higher GD system.
Fig. 5. The (2,1)-periodic reduction of the system (2.16) gives rise to a 10-dimensional mapping.
ith 𝑎𝑥2𝑦2 + 𝑏𝑥0𝑦4 = (𝑎 + 𝑏) 𝑥3𝑦1, 𝑎𝑥2𝑧3 + 𝑐𝑥4𝑧1 = (𝑎 + 𝑐) 𝑥1𝑧4, 𝑎𝑦3𝑧2 +
𝑑𝑦1𝑧4 = (𝑎 + 𝑑) 𝑦4𝑧1. We define, for all 𝑖,

m𝑖 (𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑦1, 𝑦2, 𝑦3, 𝑧1, 𝑧2, 𝑧3
)

=
(

𝑥𝑖, 𝑥𝑖+1, 𝑥𝑖+2, 𝑥𝑖+3, 𝑦𝑖+1, 𝑦𝑖+2, 𝑦𝑖+3, 𝑧𝑖+1, 𝑧𝑖+2, 𝑧𝑖+3
)

and 𝑥𝑖 =
𝑝𝑥𝑖
𝑞𝑥𝑖

, 𝑦𝑖 =
𝑝𝑦𝑖
𝑞𝑦𝑖

, 𝑧𝑖 =
𝑝𝑧𝑖
𝑞𝑧𝑖

, with gcd(𝑝𝑥𝑖 , 𝑞
𝑥
𝑖 ) = gcd(𝑝𝑦𝑖 , 𝑞

𝑦
𝑖 ) =

gcd(𝑝𝑧𝑖 , 𝑞
𝑧
𝑖 ) = 1. The first few numerators are

𝑝𝑦4 = −𝑎𝑥2𝑦2 + (𝑎 + 𝑏) 𝑥3𝑦1
𝑝𝑧4 = −𝑎𝑏𝑥0𝑦3𝑧2 − 𝑎 (𝑎 + 𝑑) 𝑥2𝑦2𝑧1 + (𝑎 + 𝑑) (𝑎 + 𝑏) 𝑥3𝑦1𝑧1
𝑝𝑥4 = −𝑎𝑏 (𝑎 + 𝑐) 𝑥0𝑥1𝑦3𝑧2 − 𝑎𝑏𝑑𝑥0𝑥2𝑦1𝑧3 − 𝑎 (𝑎 + 𝑑) (𝑎 + 𝑐) 𝑥1𝑥2𝑦2𝑧1

+ (𝑎 + 𝑑) (𝑎 + 𝑐) (𝑎 + 𝑏) 𝑥1𝑥3𝑦1𝑧1
𝑝𝑦5 = −𝑎𝑏 (𝑎 + 𝑐) (𝑎 + 𝑏) 𝑥0𝑥1𝑦2𝑦3𝑧2 − 𝑎𝑏𝑑 (𝑎 + 𝑏) 𝑥0𝑥2𝑦1𝑦2𝑧3

− 𝑎𝑏𝑐𝑑𝑥0𝑥3𝑦1𝑦3𝑧1 − 𝑎 (𝑎 + 𝑑) (𝑎 + 𝑐) (𝑎 + 𝑏) 𝑥1𝑥2𝑦22𝑧1
+ (𝑎 + 𝑏)2 (𝑎 + 𝑑) (𝑎 + 𝑐) 𝑥1𝑥3𝑦1𝑦2𝑧1

𝑝𝑧5 = −𝑎𝑏 (𝑎 + 𝑑) (𝑎 + 𝑐) (𝑎 + 𝑏) 𝑥0𝑥1𝑦2𝑦3𝑧22 − 𝑎𝑏𝑑 (𝑎 + 𝑑) (𝑎 + 𝑏)

× 𝑥0𝑥2𝑦1𝑦2𝑧2𝑧3 − 𝑎𝑏𝑐𝑑 (𝑎 + 𝑑) 𝑥0𝑥3𝑦1𝑦3𝑧1𝑧2
+ 𝑎2𝑏𝑐𝑑𝑥1𝑥2𝑦1𝑦2𝑧1𝑧3 − 𝑎 (𝑎 + 𝑑)2 (𝑎 + 𝑐) (𝑎 + 𝑏) 𝑥1𝑥2𝑦22𝑧1𝑧2
− 𝑎𝑏𝑐𝑑 (𝑎 + 𝑏) 𝑥1𝑥3𝑦21𝑧1𝑧3
+ (𝑎 + 𝑑)2 (𝑎 + 𝑏)2 (𝑎 + 𝑐) 𝑥1𝑥3𝑦1𝑦2𝑧1𝑧2

𝑝𝑥5 = −𝑎𝑏 (𝑎 + 𝑐)2 (𝑎 + 𝑑) (𝑎 + 𝑏) 𝑥0𝑥1𝑥2𝑦2𝑦3𝑧22 + 𝑎
2𝑏2𝑐𝑑𝑦3𝑥0𝑥1𝑥3𝑦2𝑧1𝑧2

− 𝑎𝑏𝑑 (𝑎 + 𝑑) (𝑎 + 𝑐) (𝑎 + 𝑏) 𝑥0𝑥22𝑦1𝑦2𝑧2𝑧3
− 𝑎𝑏𝑐𝑑 (𝑎 + 𝑑) (𝑎 + 𝑐) 𝑥0𝑥2𝑥3𝑦1𝑦3𝑧1𝑧2 + 𝑎2𝑏𝑐𝑑 (𝑎 + 𝑐) 𝑥1𝑥22𝑦1𝑦2𝑧1𝑧3
− 𝑎 (𝑎 + 𝑑)2 (𝑎 + 𝑐)2 (𝑎 + 𝑏) 𝑥1𝑥22𝑦

2
2𝑧1𝑧2

− 𝑎𝑏𝑐𝑑 (𝑎 + 𝑐) (𝑎 + 𝑏) 𝑥1𝑥2𝑥3𝑦21𝑧1𝑧3 + (𝑎 + 𝑑)2 (𝑎 + 𝑐)2 (𝑎 + 𝑏)2

× 𝑥1𝑥2𝑥3𝑦1𝑦2𝑧1𝑧2 + 𝑎2𝑏𝑐𝑑 (𝑎 + 𝑑) 𝑥1𝑥2𝑥3𝑦22𝑧
2
1

− 𝑎𝑏𝑐𝑑 (𝑎 + 𝑑) (𝑎 + 𝑏) 𝑥1𝑥23𝑦1𝑦2𝑧
2
1

⋮

7 
The denominators of the first five iterates are:

𝑞𝑦4 = 𝑏𝑥0, 𝑞
𝑦
5 = 𝑏2𝑐𝑑𝑥0𝑦1𝑧1𝑥1, 𝑞

𝑦
6 = 𝑏3𝑐2𝑑2𝑥20𝑦1𝑧1𝑥1𝑦2𝑧2𝑥2,

𝑞𝑦7 = 𝑏5𝑐3𝑑3𝑥30𝑦
2
1𝑧

2
1𝑥

2
1𝑦2𝑧2𝑥2𝑦3𝑧3𝑥3,

𝑞𝑦8 = 𝑏7𝑐5𝑑5𝑧31𝑦
3
1𝑥

3
0𝑥

3
1𝑦

2
2𝑧

2
2𝑥

2
2𝑦3𝑧3𝑥3, 𝑞

𝑧
4 = 𝑏𝑑𝑥0𝑦1, 𝑞

𝑧
5 = 𝑏2𝑐𝑑2𝑥0𝑦1𝑧1𝑥1𝑦2,

𝑞𝑧6 = 𝑏3𝑐2𝑑3𝑥20𝑦
2
1𝑧1𝑥1𝑦2𝑧2𝑥2𝑦3,

𝑞𝑧7 = 𝑏5𝑐3𝑑5𝑥30𝑥3𝑧3𝑦3𝑥2𝑧2𝑦
2
2𝑥

2
1𝑧

2
1𝑦

3
1, 𝑞

𝑧
8 = 𝑏7𝑐5𝑑7𝑥31𝑧

3
1𝑦

3
1𝑥

4
0𝑦

3
2𝑧

2
2𝑥

2
2𝑦

2
3𝑧3𝑥3,

𝑞𝑥4 = 𝑏𝑐𝑑𝑥0𝑦1𝑧1, 𝑞
𝑥
5 = 𝑏2𝑐2𝑑2𝑥0𝑦1𝑧1𝑥1𝑦2𝑧2,

𝑞𝑥6 = 𝑏3𝑐3𝑑3𝑥20𝑦
2
1𝑧

2
1𝑥1𝑦2𝑧2𝑥2𝑦3𝑧3, 𝑞

𝑥
7 = 𝑏5𝑐5𝑑5𝑦31𝑥

3
0𝑥

2
1𝑦

2
2𝑧

2
2𝑥2𝑦3𝑧3𝑥3𝑧

3
1,

𝑞𝑥8 = 𝑏7𝑐7𝑑7𝑦32𝑥
3
1𝑧

3
1𝑦

4
1𝑥

4
0𝑧

3
2𝑥

2
2𝑦

2
3𝑧

2
3𝑥3.

We have verified, using MAPLE,26 that, for 𝑖 = 5,… , 8, gcd(𝑥𝑝4, 𝑥
𝑝
𝑖 ) =

gcd(𝑥𝑝4, 𝑦
𝑝
𝑖 ) = gcd(𝑥𝑝4, 𝑧

𝑝
𝑖 ) = gcd(𝑦𝑝4, 𝑥

𝑝
𝑖 ) = gcd(𝑦𝑝4, 𝑦

𝑝
𝑖 ) = gcd(𝑦𝑝4, 𝑧

𝑝
𝑖 ) =

gcd(𝑧𝑝4, 𝑥
𝑝
𝑖 ) = gcd(𝑧𝑝4, 𝑦

𝑝
𝑖 ) = gcd(𝑧𝑝4, 𝑧

𝑝
𝑖 ) = 1. From this, and the fact that the

denominators 𝑥𝑞𝑖 , 𝑦
𝑞
𝑖 , 𝑧

𝑞
𝑖 , 𝑖 = 4,… , 8 are monomial, by Ref. 23, Theorem

2, for all 𝑖, the functions 𝑥𝑖, 𝑦𝑖, 𝑧𝑖 are Laurent polynomials in the initial
values. □

Notice that the denominators do not depend on 𝑎. Hence, for any
𝑎 ∈ Z and 𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑦1, 𝑦2, 𝑦3, 𝑧1, 𝑧2, 𝑧3 ∈ {1,−1} the sequences 𝑥, 𝑦, 𝑧
are integer sequences. For example, taking 𝑎 = −2, 𝑧1 = −1, and setting
all other initial values to 1, the values for 𝑥𝑛, 𝑦𝑛, 𝑧𝑛 with −6 ≤ 𝑛 ≤ 12
are respectively

𝑥 = 67177, 4209,−255, 137,−15, 5, 1, 1, 1, 1, 1, 5,−7, 49,−767, 2905,−5519,

1021381, 22876241

𝑦 = 22417, 169, 129,−47, 9,−3, 1, 1, 1, 1, 1,−3, 17,−7,−127, 5521,−15847,

− 89667,−54620095

𝑧 = −74567, 1079,−631, 73,−5,−7, 1,−1, 1, 1, 3, 1, 9,−57, 313,−647, 13835,

312009, 3909457.

This provides an example of a set of three integer sequences generated

by a coupled system of bilinear recurrences. These sequences satisfy
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many more relations. For example, from Eq. (2.18), we get

𝑎2
(

𝑥𝑛−2𝑥𝑛−1𝑦𝑛𝑦𝑛−3 − 𝑥𝑛𝑥𝑛−3𝑦𝑛−2𝑦𝑛−1
)

+ (𝑎 + 𝑑) (𝑎 + 𝑐)
(

𝑥𝑛𝑥𝑛−4𝑦𝑛𝑦𝑛−2
−𝑥𝑛−3𝑥𝑛−1𝑦𝑛−3𝑦𝑛+1

)

+ 𝑐𝑑
(

𝑥𝑛−3𝑥𝑛+2𝑦𝑛−3𝑦𝑛−2 − 𝑥𝑛𝑥𝑛−1𝑦𝑛𝑦𝑛−5
)

= 0,

nd Eq. (Eq. (2.19)) yields
3 (𝑥2𝑛𝑥

2
𝑛+1𝑥𝑛−2𝑥𝑛−3 − 𝑥

2
𝑛−1𝑥𝑛+2𝑥𝑛+1𝑥

2
𝑛−2

)

− (𝑎 + 𝑑) (𝑎 + 𝑐) (𝑎 + 𝑏) 𝑥𝑛+1
× 𝑥𝑛−2

(

𝑥𝑛+2𝑥
2
𝑛𝑥𝑛−4 − 𝑥

2
𝑛−1𝑥𝑛+3𝑥𝑛−3

)

− 𝑏𝑐𝑑
(

𝑥𝑛−1𝑥𝑛−2𝑥𝑛−3
(

𝑥𝑛𝑥𝑛+4𝑥𝑛−1
+𝑥𝑛+3𝑥𝑛−2𝑥𝑛+2

)

− 𝑥𝑛+2𝑥𝑛+1𝑥𝑛
(

𝑥𝑛𝑥𝑛−5𝑥𝑛−1 + 𝑥𝑛−3𝑥𝑛+1𝑥𝑛−4
))

= 0,

hich also holds for the 𝑦 and 𝑧 sequences.
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